Previous |  Up |  Next

Article

Title: The nonconforming finite element method in the problem of clamped plate with ribs (English)
Author: Janovský, Vladimír
Author: Procházka, Petr
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 21
Issue: 4
Year: 1976
Pages: 273-289
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: A nonconforming finite element method solving the problem of clamped plate with ribs is proposed and discussed. The ribs are assumed stiff against bending and rotsion in the sense of the Saint-Venant theory. The method presented makes use of Ari-Adini's polynomials. error estimates are derived and analysed. A convergence assertion (independent of the regularity of solution) is proved in the special case of nonintersecting ribs. ()
MSC: 65N30
MSC: 74K20
idZBL: Zbl 0357.65087
idMR: MR0413548
DOI: 10.21136/AM.1976.103647
.
Date available: 2008-05-20T18:05:10Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103647
.
Reference: [1] Bramble J., Hilbert S. R.: Estimative of linear functional on Sobolev spaces with application to Fourier transforms and Spline interpolation.Siam. J. Numer. Anal. 7, (1970), 112- 124. MR 0263214, 10.1137/0707006
Reference: [2] Ciarlet P. G.: Conforming and nonconforming finite element methods for solving the plate problem.Conference on the Numerical Solution of Differential Equations, University of Dundee, July 1973, 03-06. MR 0423832
Reference: [3] Ciarlet P. C., Raviart P. A.: General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods.Arch. Rat. Anal. Vol. 46 (1972) 177- 199. MR 0336957, 10.1007/BF00252458
Reference: [4] Jakovlev G. N.: The boundary properties of the functions belonging to the class $W_p^{(1)}$ on domains with conical points.(in Russian). DAN UdSSR T 140 (1961), 73-76. MR 0136988
Reference: [5] Kondratěv V. A.: Boundary value problem for elliptic equations with conical or angular points.Trans. Moscow Math. Soc. (1967), 227-313.
Reference: [6] Nečas J.: Les methodes directes en theorie des equations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [7] Strang G.: Variational crimes in the finite element method.The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz). Academia Press, New York (1972), 689-710. Zbl 0264.65068, MR 0413554
.

Files

Files Size Format View
AplMat_21-1976-4_4.pdf 2.450Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo