Previous |  Up |  Next

Article

Title: Schrödinger eigenvalue problem for the Gaussian potential (English)
Author: Trlifaj, Ladislav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 22
Issue: 3
Year: 1977
Pages: 189-198
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The radial Schrödinger equation with an attractive Gaussian potential and a general angular momentum is transformed by means of the modified Laplace transformation into a linear homogeneous differential equation of the first order with one "retarded" argument. Owing to the fusion of the arguments at the point $z=0$ its integration is possible by an iteration procedure. The discrete spectrum differs from the continuous one by the boundary condition at $z=\infty$ which determines the explicit equation for the energy eigenvalues. The properties of the resolvent are investigated in detail on the real half-axis and various approximations are dicussed. ()
MSC: 34L99
MSC: 35J10
idZBL: Zbl 0372.34016
idMR: MR0447783
DOI: 10.21136/AM.1977.103692
.
Date available: 2008-05-20T18:07:08Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103692
.
Reference: [1] А. О. Гельфонд: Исчисление конечных разностей.Гос. изд. Физ.-Мат. Лит., Москва, 1959. Zbl 1047.90504
Reference: [2] А. О. Myschkis: Lineare Differentialgleichungen mit nacheilendem Argument.Deutscher Verlag der Wissenschaften, Berlin, 1955. Zbl 0067.31802, MR 0073844
Reference: [3] E. Pinney: Ordinary Difference-Differential Equations.University of California Press, Berkeley and Los Angeles, 1958. Zbl 0091.07901, MR 0097597
Reference: [4] К. Г. Валеев И. Р. Карганьян: .в сборнике: Функциональные и дифференциально-разностные уравнения. Издание Института математики АН УССР, Киев, 1974. Zbl 1235.49003
Reference: [5] S. Flügge: Practical Quantum Mechanics I.Springer-Verlag, Berlin-Heidelberg-New York, 1971. MR 1746199
Reference: [6] B. van der Pol H. Bremer: Operational Calculus Based on the Two-sided Laplace Integral.Cambridge, 1950. MR 0038476
Reference: [7] G. Doetsch: Handbuch der Laplace-Transformation vol. I + II.Birkhäuser Verlag, Basel and Stuttgart, 1950+ 1955. MR 0344808
Reference: [8] H. Bateman: Higher Transcendental Functions vol. III.McGraw-Hill Book Com., New York, Toronto and London, 1955. Zbl 0064.06302, MR 0066496
Reference: [9] A. de Shalit I. Talmi: Nuclear Shell Theory.Academic Press, New York and London, 1963. MR 0154642
.

Files

Files Size Format View
AplMat_22-1977-3_5.pdf 1.792Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo