Previous |  Up |  Next

Article

Title: On the existence of a weak solution of the boundary value problem for the equilibrium of a shallow shell reinforced with stiffening ribs (English)
Author: Bock, Igor
Author: Lovíšek, Ján
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 23
Issue: 2
Year: 1978
Pages: 132-149
Summary lang: English
Summary lang: Slovak
Summary lang: Russian
.
Category: math
.
Summary: The existence and the unicity of a weak solution of the boundary value problem for a shallow shell reinforced with stiffening ribs is proved by the direct variational method. The boundary value problem is solved in the space $W(\Omega)\subset H^1_0(\Omega)\times H^1_0(\Omega) \times H^2_0(\Omega)$, on which the corresponding bilinear form is coercive. A finite element method for numerical solution is introduced. The approximate solutions converge to a weak solution in the space $Q(\Omega)$. (English)
Keyword: numerical analysis
Keyword: weak solution
Keyword: boundary value problem
Keyword: shallow shell
Keyword: variational problem
Keyword: finite elements
MSC: 49L99
MSC: 65N30
MSC: 74K25
MSC: 74S05
idZBL: Zbl 0397.73073
idMR: MR0495557
DOI: 10.21136/AM.1978.103737
.
Date available: 2008-05-20T18:09:08Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103737
.
Reference: [1] S. Agmon: Lectures on elliptic boundary value problems.New York, 1965. Zbl 0142.37401, MR 0178246
Reference: [2] I. Hlaváček J. Nečas: On inequalities of Korn's Type I. in boundary value problems for elliptic systems of partial differential equations.Arch. Rat. Mech. Annal. 36(1970), 305-311. MR 0252844
Reference: [3] J. Haslinger: Sur la solution d'un probleme de la plaque.Apl. mat. 19 (1974), No 5, 316-326. Zbl 0324.73049, MR 0369902
Reference: [4] J. L. Lions E. Magenes: Problems aux limites non homogenes et applications.Volume I. Paris 1968.
Reference: [5] J. Lovíšek: A weak solution of statically nonlinear problem for shallow shells considering the wind action.Scientific research, SVŠT Bratislava, 1975 (in Slovak).
Reference: [6] A. G. Nazarov: Some contact problems of the theory of shells.(in Russian), DAN Arm. SSR, Vol. 9, No. 2, 1948.
Reference: [7] A. G. Nazarov: Foundations of the theory and the method of computing shallow shells.(in Russian), Moscow, 1966.
Reference: [8] J. Nečas: Les méthodes directes en theorie des équations elliptiques.Academia, Praha, 1967. MR 0227584
Reference: [9] J. T. Oden J. N. Ready: Variational methods in theoretical mechanics.Springer Verlag, 1976. MR 0478957
Reference: [10] G. N. Sawin N. P. Fleischman: Plates and shells with stiffening ribs.(in Russian). Kiev, 1964.
Reference: [11] P. Seide: Small elastic deformations of thin shells.Noordhoff International Publishing Leyden, 1975. Zbl 0313.73070, MR 0403382
Reference: [12] G. Strang Y. Fix: An analysis of the finite element method.Prentice Hall Inc., 1973. MR 0443377
.

Files

Files Size Format View
AplMat_23-1978-2_5.pdf 3.076Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo