Previous |  Up |  Next


quadratic programming; elastic clamped plate; algorithm; energy functional; convergence; minimization problem; numerical solution; finite element method
The problem of a thin elastic plate, deflection of which is limited below by a rigid obstacle is solved. Using Ahlin's and Ari-Adini's elements on rectangles, the convergence is established and SOR method with constraints is proposed for numerical solution.
[1] Cea J.: Optimisation théorie et algorithmes. Dunod, Paris 1971. MR 0298892 | Zbl 0211.17402
[2] Ciarlet P. G.: Conforming and nonconforming finite element methods for solving the plate problem. Conference on the numerical solution of differential equations, University of Dundee, July 1973, 03-06. MR 0423832
[3] Ciarlet P. G., Raviart P. A.: General Lagrange and Hermite interpolation in $R_n$ with applications to finite element methods. Arch. Rat. Anal. Vol. 46 (1972), 177- 199. DOI 10.1007/BF00252458 | MR 0336957 | Zbl 0243.41004
[4] Glowinski R.: Analyse numerique d'inequations variationnelles d'ordre 4. (preprint of University Paris VI).
[5] Jakovlev G. N.: The boundary properties of the functions belonging to the class $W^{1,p} on domains with conical or angular points. Trans. Moscow Math. Soc. (1967), 227--313.
[6] Janovský V., Procházka P.: The nonconforming finite element method in the problem of clamped plate with ribs. Apl. Mat. 21 (1976), No 4, 273 - 289. MR 0413548
[7] Glowinski R., Lions J. L., Trémolieres R.: Analyse numérique des inéquations variationnelles. Dunod, Paris 1976.
Partner of
EuDML logo