Previous |  Up |  Next

Article

Title: Curved triangular finite $C^m$-elements (English)
Author: Ženíšek, Alexander
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 23
Issue: 5
Year: 1978
Pages: 346-377
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: Curved triangular $C^m$-elements which can be pieced together with the generalized Bell's $C^m$-elements are constructed. They are applied to solving the Dirichlet problem of an elliptic equation of the order $2(m+1)$ in a domain with a smooth boundary by the finite element method. The effect of numerical integration is studied, sufficient conditions for the existence and uniqueness of the approximate solution are presented and the rate of convergence is estimated. The rate of convergence is the same as in the case of polygonal domains when the generalized Bell's $C^m$-elements are used. (English)
Keyword: generalized Bell’s $C^m$-elements
Keyword: approximate solution
Keyword: rate of convergence
MSC: 35A35
MSC: 35J40
MSC: 65M99
MSC: 65N30
MSC: 65N99
idZBL: Zbl 0404.35041
idMR: MR0502072
DOI: 10.21136/AM.1978.103761
.
Date available: 2008-05-20T18:10:13Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103761
.
Reference: [1] Bramble J. H., Zlámal M.: Triangular elements in the finite element method.Math. Соmр. 24 (1970), 809-820. MR 0282540
Reference: [2] Ciarlet P. G., Raviart P. A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods.In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), pp. 409-474, Academic Press, New York 1972. Zbl 0262.65070, MR 0421108
Reference: [3] Ciarlet P. G.: Numerical Analysis of the Finite Element Method.Université de Montréal, 1975. MR 0495010
Reference: [4] Holuša L., Kratochvíl J., Zlámal M., Ženíšek A.: The Finite Element Method.Technical Report. Computing Center of the Technical University of Brno, 1970. (In Czech.)
Reference: [5] Kratochvíl J., Ženíšek A., Zlámal M.: A simple algorithm for the stiffness matrix of triangular plate bending finite elements.Int. J. numer. Meth. Engng. 3 (1971), 553 - 563. 10.1002/nme.1620030409
Reference: [6] Mansfield L.: Approximation of the boundary in the finite element solution of fourth order problems.SIAM J. Numer. Anal. 15 (1978), the June issue. Zbl 0391.65047, MR 0471373, 10.1137/0715037
Reference: [7] Nečas J.: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [8] Stroud A. H.: Approximate Calculation of Multiple Integrals.Prentice-Hall., Englewood Cliffs, N. J., 1971. Zbl 0379.65013, MR 0327006
Reference: [9] Zlámal M.: The finite element method in domains with curved boundaries.Int. J. numer. Meth. Engng. 5 (1973), 367-373. MR 0395262, 10.1002/nme.1620050307
Reference: [10] Zlámal M.: Curved elements in the finite element method. I.SIAM J. Numer. Anal. 10(1973), 229-240. MR 0395263, 10.1137/0710022
Reference: [11] Zlámal M.: Curved elements in the finite element method. II.SlAM J. Numer. Anal. 1.1 (1974), 347-362. MR 0343660, 10.1137/0711031
Reference: [12] Ženíšek A.: Interpolation polynomials on the triangle.Numer. Math. 15 (1970), 283 - 296. MR 0275014, 10.1007/BF02165119
.

Files

Files Size Format View
AplMat_23-1978-5_4.pdf 3.770Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo