Previous |  Up |  Next

Article

Title: The finite element solution of parabolic equations (English)
Author: Nedoma, Josef
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 23
Issue: 6
Year: 1978
Pages: 408-438
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: In contradistinction to former results, the error bounds introduced in this paper are given for fully discretized approximate soltuions of parabolic equations and for arbitrary curved domains. Simplicial isoparametric elements in $n$-dimensional space are applied. Degrees of accuracy of quadrature formulas are determined so that numerical integration does not worsen the optimal order of convergence in $L_2$-norm of the method. (English)
Keyword: error bounds
Keyword: approximate solutions
Keyword: parabolic equations
Keyword: arbitrary curved domains
Keyword: quadrature formulas
Keyword: optimal order of convergence
MSC: 35K60
MSC: 65N15
MSC: 65N30
idZBL: Zbl 0427.65075
idMR: MR0508545
DOI: 10.21136/AM.1978.103769
.
Date available: 2008-05-20T18:10:34Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103769
.
Reference: [1] P. G. Ciarlet, A. P. Raviart: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods.In A. K. Aziz: The mathematical foundations of the finite element method with applications to partial differential equations. Academic Press. New York and London. 1972. Zbl 0262.65070, MR 0421108
Reference: [2] P. A. Raviart: The use of numerical integration in finite element methods for solving parabolic equations.Lecture presented at the Conference on Numerical Analysis. Royal Irish Academy. Dublin, August 14-18, 1972. MR 0345428
Reference: [3] Jindřich Nečas: Les Méthodes Directe en Théorie des Equations Elliptiques.Mason. Paris. 1967. MR 0227584
Reference: [4] V. J. Smirnov: Kurs vyššej matěmatiki.tom V. Gosudarstvěnnoje izdatělstvo fiziko-matěmatičeskoj litěratury. Moskva. 1960.
Reference: [5] Miloš Zlámal: Finite Element Multistep Discretizations of Parabolic Boundary Value Problems.Mathematics of Computation, 29, Nr 130 (1975), 350-359. MR 0371105, 10.1090/S0025-5718-1975-0371105-2
Reference: [6] Miloš Zlámal: Curved Elements in the Finite Element Method I.SIAM J. Numer. Anal., 10. No 1 (1973), 229-240. MR 0395263, 10.1137/0710022
Reference: [7] Miloš Zlámal: Curved Elements in the Finite Element Methods II.SIAM J. Numer. Anal., 11. No 2 (1974), 347-362. MR 0343660, 10.1137/0711031
Reference: [8] Miloš Zlámal: Finite Element Methods for Parabolic Equations.Mathematics of Computation, 28, No 126 (1974), 393-404. MR 0388813, 10.1090/S0025-5718-1974-0388813-9
Reference: [9] T. Dupont G. Fairweather J. P. Johnson: Three-level Galerkin Methods for Parabolic Equations.SIAM J. Numer. Anal., 11, No 2 (1974). MR 0403259
Reference: [10] M. Lees: A priori estimates for the solutions of difference approximations to parabolic differential equations.Duke Math. J., 27 (1960), 287-311. MR 0121998, 10.1215/S0012-7094-60-02727-7
Reference: [11] Miloš Zlámal: Finite element methods for nonlinear parabolic equations.R.A.I.R.O. Analyse numérique/Numerical Analysis, 11, No 1 (1977), 93-107. MR 0502073
Reference: [12] W. Liniger: A criterion for A-stability of linear multistep integration formulae.Computing, 3 (1968), 280-285. Zbl 0169.19902, MR 0239763, 10.1007/BF02235394
.

Files

Files Size Format View
AplMat_23-1978-6_3.pdf 4.252Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo