Previous |  Up |  Next

Article

Title: Dual finite element analysis for an inequality of the 2nd order (English)
Author: Haslinger, Jaroslav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 24
Issue: 2
Year: 1979
Pages: 118-132
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The dual variational formulation of some free boundary value problem is given and its approximation by finite element method is studied, using piecewise linear elements with non-positive divergence. (English)
Keyword: dual variational formulation
Keyword: free boundary value problem
Keyword: finite element method
Keyword: elliptic inequality
Keyword: rate of convergence
Keyword: Ritz approximations
MSC: 35R35
MSC: 49J40
MSC: 65N30
idZBL: Zbl 0424.65057
idMR: MR0523228
DOI: 10.21136/AM.1979.103788
.
Date available: 2008-05-20T18:11:24Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103788
.
Reference: [1] I. Babuška: Approximation by hill-functions II.Institute for fluid Dynamics and Applied mathematics. Technical note BN-708. MR 0305550
Reference: [2] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities. Part I: Primal Theory.(preprint). MR 0448949
Reference: [3] J. Haslinger I. Hlaváček: Convergence of finite element method based on the dual variational formulation.Apl. Mat. 21 1976, 43 - 65. MR 0398126
Reference: [4] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584
Reference: [5] J. Haslinger: Finite element analysis for unilateral problems with obstacles on the boundary.Apl. Mat. 22 1977, 180-189. Zbl 0434.65083, MR 0440956
Reference: [6] J. Haslinger: A note on a dual finite element method.CMUC 17, 4 1976, 665 - 673. Zbl 0361.65095, MR 0431750
Reference: [7] P. G. Ciarlet P. A. Raviart: General Lagrange and Herniite interpolation in $R^n$ with applications to finite element methods.Arch. Rational Mech. Anal. 46 1972, 217-249. MR 0336957
Reference: [8] J. Cea: Optimisation, théorie et algorithmes.Dunod, Paris 1971. Zbl 0211.17402, MR 0298892
Reference: [9] G. Strang: Approximations in the finite element method.Numer. Math. 19, 81 - 98. MR 0305547, 10.1007/BF01395933
Reference: [10] J. L. Lions: Quelques Méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris. Zbl 0248.35001
Reference: [11] P. A. Raviart: Hybrid finite element methods for solving 2nd order elliptic equations.Conference on Numer. Analysis, Dublin, 1974.
Reference: [12] I. Hlaváček: Dual finite element analysis for unilateral boundary value problems.Apl. Mat. 22 1977, 14-51. MR 0426453
Reference: [13] I. Hlaváček: Dual finite element analysis for elliptic problems with obstacles on the boundary, I.Ap. Mat. 22 (1977), 244-255. MR 0440958
.

Files

Files Size Format View
AplMat_24-1979-2_5.pdf 2.053Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo