Previous |  Up |  Next


Title: On general boundary value problems and duality in linear elasticity. II (English)
Author: Hünlich, Rolf
Author: Naumann, Joachim
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 25
Issue: 1
Year: 1980
Pages: 11-32
Summary lang: English
Summary lang: Czech
Summary lang: Russian
Category: math
Summary: The present part of the paper completes the discussion in Part I in two directions. Firstly, in Section 5 a number of existence theorems for a solution to Problem III (principle of minimum potential energy) is established. Secondly, Section 6 and 7 are devoted to a discussion of both the classical and the abstract approach to the duality theory as well as the relationship between the solvability of Problem III and its dual one. (English)
Keyword: general boundary value problems
Keyword: principle of minimum potential energy
Keyword: existence theorems
Keyword: dual problem
MSC: 35J20
MSC: 49S05
MSC: 73C02
MSC: 74B99
MSC: 74H99
idZBL: Zbl 0453.73013
idMR: MR0554088
DOI: 10.21136/AM.1980.103834
Date available: 2008-05-20T18:13:28Z
Last updated: 2020-07-28
Stable URL:
Reference: [1] Duvaut G., Lions J. L.: Les inéquations en mécanique et en physique.Dunod, Paris 1972. Zbl 0298.73001, MR 0464857
Reference: [2] Ekeland I., Temam R.: Analyse convexe et problèmes variationnels.Dunod, Gauthier- Villars, Paris 1974. Zbl 0281.49001, MR 0463993
Reference: [3] Fichera G.: Problemi elastostatici con vincoli unilaterali: il problemadi Signorini con ambigue condizioni al contorno.Atti Accad. Naz. Lincei, Memorie (Cl. Sci. fis., mat. e nat.), serie 8, vol. 7 (1964), 91-140. MR 0178631
Reference: [4] Fichera G.: Boundary value problems of elasticity with unilateral constraints.In: Handbuch der Physik (Herausg.: S. Flügge), Band VI a/2, Springer, 1972.
Reference: [5] Gajewski H., Gröger K.: Konjugierte Operatoren und a-posteriori-Fehlerabschützungen.Math. Nachr. 73 (1976), ЗІ5-333. MR 0435959, 10.1002/mana.19760730124
Reference: [6] Hess P.: On semi-coercive nonlinear problems.Indiana Univ. Math. J., 23 (1974), 645-654. Zbl 0259.47051, MR 0341214, 10.1512/iumj.1974.23.23055
Reference: [7] Hlaváček I.: Variational principles in the linear theory of elasticity for general boundary conditions.Apl. Matem., 12 (1967), 425 - 447. MR 0231575
Reference: [8] Hlaváček I., Nečas J.: On inequalities of Korn's type. II: Applications to linear elasticity.Arch. Rat. Mech. Anal., 36 (1970), 312-334. Zbl 0193.39002, MR 0252845, 10.1007/BF00249519
Reference: [9] Ioffe A. D., Tikhomirov V. M.: The theory of extremum problems.(Russian). Moscow, 1974.
Reference: [10] Krein S. G.: Linear equations in a Banach space.(Russian). Moscow, 1971. MR 0374949
Reference: [11] Lions J. L., Stampacchia G.: Variational inequalities.Comm. Pure Appl. Math., 20 (1967), 493-519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302
Reference: [12] Nayroles B.: Duality and convexity in solid equilibrium problems.Laboratoire Méc. et d'Accoustique, C.N.R.S., Marseille 1974.
Reference: [13] Rockafellar R. T.: Duality and stability in extremum problems involving convex functions.Pacific J. Math., 21 (1967), 167-187. Zbl 0154.44902, MR 0211759, 10.2140/pjm.1967.21.167
Reference: [14] Schatzman M.: Problèmes aux limites non linéaires, non coercifs.Ann. Scuola Norm. Sup. Pisa, 27, serie III (1973), 640-686. MR 0380545


Files Size Format View
AplMat_25-1980-1_3.pdf 1.904Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo