Title:
|
The density of solenoidal functions and the convergence of a dual finite element method (English) |
Author:
|
Hlaváček, Ivan |
Language:
|
English |
Journal:
|
Aplikace matematiky |
ISSN:
|
0373-6725 |
Volume:
|
25 |
Issue:
|
1 |
Year:
|
1980 |
Pages:
|
39-55 |
Summary lang:
|
English |
Summary lang:
|
Czech |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
Summary:
|
A proof is given of the following theorem: infinitely differentiable solenoidal vector - functions are dense in the space of functions, which are solenoidal in the distribution sense only. The theorem is utilized in proving the convergence of a dual finite element procedure for Dirichlet, Neumann and a mixed boundary value problem of a second order elliptic equation. (English) |
Keyword:
|
density of solenoidal functions |
Keyword:
|
convergence of a dual finite element method |
Keyword:
|
Dirichlet, Neumann and a mixed boundary value problem |
Keyword:
|
second order elliptic equation |
MSC:
|
35J25 |
MSC:
|
46E35 |
MSC:
|
65N30 |
idZBL:
|
Zbl 0424.65056 |
idMR:
|
MR0554090 |
DOI:
|
10.21136/AM.1980.103836 |
. |
Date available:
|
2008-05-20T18:13:34Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/103836 |
. |
Reference:
|
[1] J. Haslinger I. Hlaváček: Convergence of a finite element method based on the dual variational formulation.Apl. mat. 21 (1976), 43 - 65. MR 0398126 |
Reference:
|
[2] B. Fraeijs de Veubeke M. Hogge: Dual analysis for heat conduction problems by finite elements.Int. J. Numer. Meth. Eng. 5 (1972), 65 - 82. 10.1002/nme.1620050107 |
Reference:
|
[3] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584 |
Reference:
|
[4] O. A. Ladyzenskaya: The mathematical theory of viscous incompressible flow.Gordon & Breach, New York 1969. MR 0254401 |
. |