Previous |  Up |  Next

Article

Title: Nonhomogeneous boundary conditions and curved triangular finite elements (English)
Author: Ženíšek, Alexander
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 26
Issue: 2
Year: 1981
Pages: 121-141
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: Approximation of nonhomogeneous boundary conditions of Dirichlet and Neumann types is suggested in solving boundary value problems of elliptic equations by the finite element method. Curved triangular elements are considered. In the first part of the paper the convergence of the finite element method is analyzed in the case of nonhomogeneous Dirichlet problem for elliptic equations of order $2m+2$, in the second part of the paper in the case of nonhomogeneous mixed boundary value problem for second order elliptic equations. In both parts of the paper of numerical integration is studied. (English)
Keyword: nonhomogeneous boundary conditions
Keyword: Dirichlet
Keyword: Neumann
Keyword: finite element method
Keyword: curved triangular elements
Keyword: convergence
MSC: 35J25
MSC: 35J40
MSC: 65N30
idZBL: Zbl 0475.65073
idMR: MR0612669
DOI: 10.21136/AM.1981.103903
.
Date available: 2008-05-20T18:16:34Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103903
.
Reference: [1] J. J. Blair: Higher order approximations to the boundary conditions for the finite element method.Math. Соmр. 30 (1976), 250-262. Zbl 0342.65068, MR 0398123
Reference: [2] J. H. Bramble S. R. Hilbert: Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation.SIAM J. Numer. Anal. 7 (1970), 112-124. MR 0263214, 10.1137/0707006
Reference: [3] P. G. Ciarlet P. A. Raviart: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods.In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), pp. 409-474, Academic Press, New York 1972. MR 0421108
Reference: [4] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam 1978. Zbl 0383.65058, MR 0520174
Reference: [5] S. Koukal: Piecewise polynomial interpolations in the finite element method.Apl. Mat. 18 (1973), 146-160. MR 0321318
Reference: [6] L. Mansfield: Approximation of the boundary in the finite element solution of fourth order problems.SIAM J. Numer. Anal. 15 (1978), 568-579. Zbl 0391.65047, MR 0471373, 10.1137/0715037
Reference: [7] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584
Reference: [8] R. Scott: Interpolated boundary conditions in the finite element method.SIAM J. Numer. Anal. 12 (1975), 404-427. Zbl 0357.65082, MR 0386304, 10.1137/0712032
Reference: [9] G. Strang: Approximation in the finite element method.Numer. Math. 19 (1972), 81-98. Zbl 0221.65174, MR 0305547, 10.1007/BF01395933
Reference: [10] M. Zlámal: Curved elements in the finite element method. I.SIAM J. Numer. Anal. 10 (1973), 229-240. MR 0395263, 10.1137/0710022
Reference: [11] M. Zlámal: Curved elements in the finite element method. II.SIAM J. Numer. Anal. 11 (1974), 347-362. MR 0343660, 10.1137/0711031
Reference: [12] A. Ženíšek: Curved triangular finite $C^m$-elements.Apl. Mat. 23 (1978), 346-377. MR 0502072
Reference: [13] A. Ženíšek: Discrete forms of Friedrichs' inequalities in the finite element method.(To appear.) Zbl 0475.65072, MR 0631681
.

Files

Files Size Format View
AplMat_26-1981-2_6.pdf 3.304Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo