Previous |  Up |  Next

Article

Title: On a method of two-sided eigenvalue estimates for elliptic equations of the form $Au-\lambda Bu=0$ (English)
Author: Rektorys, Karel
Author: Vospěl, Zdeněk
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 26
Issue: 3
Year: 1981
Pages: 211-240
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: The Collatz method of twosided eigenvalue estimates was extended by K. Rektorys in his monography Variational Methods to the case of differential equations of the form $Au - \lambda Bu=0$ with elliptic operators. This method requires to solve, successively, certain boundary value problems. In the case of partial differential equations, these problems are to be solved approximately, as a rule, and this is the source of further errors. In the work, it is shown how to estimate these additional errors, or how to avoid them by a proper modification of the method. At the same time, some results of their own interest are derived. (English)
Keyword: Collatz method
Keyword: twosided eigenvalue estimates
Keyword: elliptic operators
MSC: 35P15
MSC: 49G05
MSC: 65N15
MSC: 65N25
MSC: 65N30
idZBL: Zbl 0474.65080
idMR: MR0615608
DOI: 10.21136/AM.1981.103913
.
Date available: 2008-05-20T18:17:02Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103913
.
Reference: [1] K. Rektorys: Variational Methods in Mathematics, Science and Engineering.Reidel Publ. Co., Dortrecht (Holland)-Boston (USA) 1977. (In Czech: Praha, SNTL, 1974.) MR 0487653
Reference: [2] L. Collatz: Eigenwertaufgaben mit technischen Anwendungen.2nd Ed. Leipzig, Geert and Portig 1963. MR 0152101
Reference: [3] L. Collatz: Functional Analysis and Numerical Mathematics.New York, Academic Press 1966. MR 0205126
Reference: [4] Z. Vospěl: Some Eigenvalue Estimates for Partial Differential Equations of the Form $Au - \lambda Bu = 0$.Dissertation, Technical University Prague, 1978. (In Czech.)
Reference: [5] P. G. Ciarlet M. H. Schulz R. S. Varga: Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. Part III, Eigenvalue Problems.Num. Math 12 (1968), 120-133. MR 0233517, 10.1007/BF02173406
Reference: [6] A. K. Azis: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations.Part I by I. Babuška and A. K. Azis, 3-359. Academic Press, New York-London, 1972. MR 0347104
.

Files

Files Size Format View
AplMat_26-1981-3_7.pdf 2.931Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo