Title:
|
Exact slopes of the rank statistics for the two-sample case under discrete distributions (English) |
Author:
|
Vorlíčková, Dana |
Language:
|
English |
Journal:
|
Aplikace matematiky |
ISSN:
|
0373-6725 |
Volume:
|
26 |
Issue:
|
6 |
Year:
|
1981 |
Pages:
|
426-431 |
Summary lang:
|
English |
Summary lang:
|
Czech |
. |
Category:
|
math |
. |
Summary:
|
The author studies the linear rank statistics for testing the pypothesis of randomness against the alternative of two samples provided both are drawn grom discrete (integer-valued) distributions. The weak law of large numbers and the exact slope are obtained for statistics with randomized ranks of with averaged scores. (English) |
Keyword:
|
hypothesis of randomness |
Keyword:
|
weak law of large numbers |
Keyword:
|
randomized ranks |
Keyword:
|
averaged scores |
MSC:
|
60F05 |
MSC:
|
62G10 |
idZBL:
|
Zbl 0478.62033 |
idMR:
|
MR0634279 |
DOI:
|
10.21136/AM.1981.103932 |
. |
Date available:
|
2008-05-20T18:17:52Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/103932 |
. |
Reference:
|
[1] J. Hájek: Asymptotic sufficiency of the vector of ranks in the Bahadur sense.Ann. Statist. 2(1974), 1105-1125. MR 0356355 |
Reference:
|
[2] M. Raghavachari: On the theorem of Bahadur on the rate of convergence of test statistics.Ann. Math. Statist. 41 (1970), 1695-1699. MR 0266361, 10.1214/aoms/1177696813 |
Reference:
|
[3] G. G. Woodworth: Large deviations and Bahadur efficiency of linear rank statistics.Ann. Math. Statist. 41 (1970), 251-283. Zbl 0211.50502, MR 0264804, 10.1214/aoms/1177697206 |
Reference:
|
[4] D. Vorlíčková: Asymptotic properties of rank tests under discrete distributions.Z. Wahrscheinlichkeitstheorie. verw. Geb. 14 (1970), 275-289. MR 0269049, 10.1007/BF00533666 |
. |