Previous |  Up |  Next

Article

Title: A finite element analysis for elastoplastic bodies obeying Hencky's law (English)
Author: Hlaváček, Ivan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 26
Issue: 6
Year: 1981
Pages: 449-461
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: Using the Haar-Kármán principle, approximate solutions of the basic boundary value problems are proposed and studied, which consist of piecewise linear stress fields on composite triangles. The torsion problem is solved in an analogous manner. Some convergence results are proven. (English)
Keyword: Haar-Kármán principle
Keyword: basic boundary value problems
Keyword: piecewise linear stress fields
Keyword: composite triangles
Keyword: torsion problem
MSC: 46E35
MSC: 49J40
MSC: 49M15
MSC: 49S05
MSC: 65N30
MSC: 73E99
MSC: 73K25
MSC: 74G30
MSC: 74H25
MSC: 74S05
idZBL: Zbl 0467.73096
idMR: MR0634282
DOI: 10.21136/AM.1981.103935
.
Date available: 2008-05-20T18:18:01Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103935
.
Reference: [1] G. Duvaut J. L. Lions: Les inéquations en mécanique et en physique.Paris, Dunod 1972. MR 0464857
Reference: [2] B. Mercier: Sur la théorie et l'analyse numérique de problèmes de plasticité.Thesis, Université Paris VI, 1977. MR 0502686
Reference: [3] P. Suquet: Existence and regularity of solutions for plasticity problems.(Preprint). Proc. IUTAM Congress in Evanston - 1978.
Reference: [4] R. Falk B. Mercier: Estimation d'erreur en élastoplasticité.C. R. Acad. Sc. Paris, 282, A, (1976), 645-648. MR 0426575
Reference: [5] R. Falk B. Mercier: Error estimates for elasto-plastic problems.R.A.I.R.O. Anal. Numer., 11 (1977), 135-144. MR 0449119
Reference: [6] V. B. Watwood B. J. Hartz: An equilibrium stress field model for finite element solution of two-dimensionalelastostatic problems.Inter. J. Solids Structures 4, (1968), 857-873.
Reference: [7] C. Johnson B. Mercier: Some equilibrium finite element methods for two-dimensional elasticity problems.Numer. Math. 30 (1978), 103-116. MR 0483904, 10.1007/BF01403910
Reference: [8] J. Céa: Optimisation, théorie et algorithmes.Dunod, Paris 1971. MR 0298892
Reference: [9] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities. Part I. Primal Theory.Numer. Math. 28, (1977), 431 - 443. MR 0448949, 10.1007/BF01404345
Reference: [10] M. Křížek: An equilibrium finite element method in three-dimensional elasticity.Apl. Mat. 27 (1982). MR 0640139
Reference: [11] P. A. Raviart J. M. Thomas: A mixed finite element method for 2-nd order elliptic problems.Math. Aspects of Fin. El. Meth. Rome 1975, Springer-Verlag 1977, 292-315. MR 0483555
Reference: [12] H. Brezis K. Stampacchia: Sur la regularité de la solution d'inéquations elliptiques.Bull. Soc. Math. France 96, (1968), 153-180. MR 0239302, 10.24033/bsmf.1663
.

Files

Files Size Format View
AplMat_26-1981-6_7.pdf 1.383Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo