Previous |  Up |  Next

Article

Title: Differential growth models for microbial populations (English)
Author: Milota, Jaroslav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 27
Issue: 1
Year: 1982
Pages: 1-16
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: Two models of microbial growth are derived as a resuslt of a discussion of the models of Monod and Hinshelwood types. The approach takes account of the lyse of dead cells in inhibitory products as well as in those which stimulate the growth. The asymptotic behaviour of the models is proved and the models applied to a chemostat. (English)
Keyword: differential growth models
Keyword: microbial populations
Keyword: asymptotic behaviour
Keyword: chemostat
Keyword: deterministic models
Keyword: Monod model
Keyword: new three component model
Keyword: live cells
Keyword: toxins
Keyword: nutrients
Keyword: bifurcation
Keyword: stability of limit cycles
MSC: 34C05
MSC: 92A15
MSC: 92D25
idZBL: Zbl 0495.92016
idMR: MR0640136
DOI: 10.21136/AM.1982.103941
.
Date available: 2008-05-20T18:18:13Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103941
.
Reference: [1] T. D. Brock: Microbial Ecology.Englewood Cliffs, Prentice Hall (1966).
Reference: [2] V. H. Edwards: The influence of high substrate concentration on microbial kinetics.Biotechnol. Bioeng. 12 (1970), 679-691. 10.1002/bit.260120504
Reference: [3] Z. Fencl: A theoretical analysis of continuous culture system.In "Theoretical Basis of Continuous Culture of Microorganisms". Publ. House Czech. Acad. Sci., Prague (1966).
Reference: [4] R. K. Finn: Inhibitory all products.J. Perm. Techn. 44 (1966), 305-321.
Reference: [5] R. I. Fletcher: A general solution for the complete Richards function.Math. Biosci. 27 (1975), 349-360. Zbl 0324.92006, 10.1016/0025-5564(75)90112-1
Reference: [6] D. Herbert R. Elsworth R. C. Telling: Continuous culture of bacteria.J. Gen. Microbiol. 14 (1956), 601-621. 10.1099/00221287-14-3-601
Reference: [7] S. N. Hinshelwood: The Chemical Kinetics of the Bacterial Cell.Oxford Univ. Press, 1946.
Reference: [8] N. D. Jerusalemskii: Control principles for microbial growth.In "Control of Biosynthesis", Moscow 1966 (Russian).
Reference: [9] E. V. Kuzmin: Remark on a growth curve for microbial populations.In "Control of Microbial Cultivation", Moscow 1969 (Russian).
Reference: [10] J. E. Marsden M. McCracken: The Hopf Bifurcation and its Applications.Springer Verlag, New York-Heidelberg-Berlin, 1976. MR 0494309
Reference: [11] R. M. May G. R. Conway M. P. Hassell T. R. E. Southwood: Time delays, density dependence and single species oscillations.J. Anim. Ecol. 43 (1974), 747-770. 10.2307/3535
Reference: [12] J. Monod: Le Croissance des Cultures Bacteriennes.Hermann et Cie, Paris, 1942.
Reference: [13] H. Moser: The Dynamics of Bacterial Populations Maintained in the Chernostat.Washington Carneige Publ., 1958.
Reference: [14] G. Oster J. Guckenheimer: Bifurcation phenomena in population models.pp. 327-353 in [10].
Reference: [15] E. O. Powell: Theory of the chernostat.Lab. Practice 14 (1965), 1145-1158.
Reference: [16] F. M. Scuodo J. R. Ziegler: The Golden Age of Theoretical Ecology: 1923-1940.Lecture Notes in Biomathematics No 22, Springer Verlag, Berlin-Heidelberg-New York, 1978. MR 0521933
Reference: [17] G. Teissier: Kinetics behaviour of heterogeneous populations in completely mixed reactors.Ann. Physiol. Biol. 12, 527-586.
Reference: [18] F. M. Williams: A model of cell growth dynamics.J. Theor. Biol. 15 (1967), 190-207. 10.1016/0022-5193(67)90200-7
Reference: [19] T. B. Young D. F. Bruley H. R. Bungay III: A dynamic mathematical model of the chemostat.Biotechnol. Bioeng. 15 (1970), 747-769.
.

Files

Files Size Format View
AplMat_27-1982-1_2.pdf 2.321Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo