Previous |  Up |  Next

Article

Title: Improvement of prediction for a larger number of steps in discrete stationary processes (English)
Author: Cipra, Tomáš
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 27
Issue: 2
Year: 1982
Pages: 118-127
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: Let $\{W_t\}=\{(X'_{t'}, Y'_t)'\}$ be vector ARMA $(m,n)$ processes. Denote by $\hat{X}_t(a)$ the predictor of $X_t$ based on $X_{t-a}, X_{t-a-1}, \ldots$ and by $\hat{X}_t(a,b)$ the predictor of $X_t$ based on $X_{t-a}, X_{t-a-1}, \ldots, Y_{t-b},Y_{t-b-1}, \ldots$. The accuracy of the predictors is measured by $\Delta_X(a)=\text{E}[X_t-\hat{X}_t(a)][X_t-\hat{X}_t(a)]'$ and $\Delta_X(a,b)=\text{E}[X_t-\hat{X}_t(a,b)][X_t-\hat{X}_t(a,b)]'$. A general sufficient condition for the equality $\Delta_X(a)=\Delta_X(a,a)]$ is given in the paper and it is shown that the equality $\Delta_X(1)=\Delta_X(1,1)]$ implies $\Delta_X(a)=\Delta_X(a,a)]$ for all natural numbers $a$. (English)
Keyword: improvement of prediction
Keyword: discrete stationary process
MSC: 60G10
MSC: 60G25
MSC: 62M20
idZBL: Zbl 0489.60047
idMR: MR0651049
DOI: 10.21136/AM.1982.103952
.
Date available: 2008-05-20T18:18:45Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103952
.
Reference: [1] J. Anděl: Measures of dependence in discrete stationary processes.Math. Operationsforsch. Statist., Ser. Statistics 10 (1979), 107-126. MR 0542367
Reference: [2] J. Anděl: On extrapolation in two-dimensional stationary processes.To appear in Math. Operationsforsch. Statist., Ser. Statistics. MR 0596515
Reference: [3] J. Anděl: Some measures of dependence in discrete stationary processes.Doctoral dissertation (Department of Statistics, Charles University, Prague, 1980) (in Czech). MR 0542367
Reference: [4] T. Cipra: Correlation and improvement of prediction in multivariate stationary processes.Ph. D. dissertation (Department of Statistics, Charles University, Prague, 1980) (in Czech).
Reference: [5] T. Cipra: Improvement of prediction in multivariate stationary processes.Kybernetika 17 (1981), 234-243. MR 0628211
Reference: [6] T. Cipra: On improvement of prediction in ARMA processes.Math. Operationsforsch. Statist., Ser. Statistics 12(1981), 567-580. Zbl 0514.62103, MR 0639253
Reference: [7] W. A. Fuller: Introduction to statistical time series.Wiley, New York, 1976. Zbl 0353.62050, MR 0448509
Reference: [8] C. W. J. Granger: Investigating causal relations by econometric models and cross-spectral methods.Econometrica 37 (1969), 424-438. 10.2307/1912791
Reference: [9] D. A. Pierce L. D. Haugh: Causality in temporal systems.Journal of Econometrics 5 (1977), 265-293. MR 0443261, 10.1016/0304-4076(77)90039-2
Reference: [10] Yu. V. Rozanov: Stationary random processes.Gos. izd., Moskva, 1963 (in Russian).
Reference: [11] C. A. Sims: Money, income and causality.American Economic Review 62 (1972), 540-552.
.

Files

Files Size Format View
AplMat_27-1982-2_5.pdf 1.163Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo