Previous |  Up |  Next

Article

Title: Note on steady flow of heat in a semi-infinite strip (English)
Author: Chakraborty, Ranjit Kumar
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 27
Issue: 3
Year: 1982
Pages: 167-175
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The existence of a solution of the two - dimensional heat conduction equation in a semi-infinite strip, under mixed boundary condition, is discussed. (English)
Keyword: steady flow of heat
Keyword: semi-infinite strip
Keyword: two-dimensional heat conduction
Keyword: mixed boundary conditions
Keyword: dual trigonometric series
Keyword: existence
MSC: 35C10
MSC: 35K05
MSC: 80A20
idZBL: Zbl 0498.35044
idMR: MR0658000
DOI: 10.21136/AM.1982.103960
.
Date available: 2008-05-20T18:19:07Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103960
.
Reference: [1] C. J. Tranter: An improved methods for dual trigonometrical series.Proc. Glasgow Math. Assoc. 6 (1964), 136-140. MR 0165305
Reference: [2] R. P. Srivastav: Dual series relations III, Dual relation involving trigonometric series.Proc. Roy. Soc. Edin. Sec. A, 66 (1964), 173-184. MR 0166544
Reference: [3] I. N. Sneddon: Mixed boundary value problems in potential theory.North Holland, Amster- dam (1966). Zbl 0139.28801, MR 0216018
Reference: [4] B. Noble J. Whiteman: Solution of dual trigonometric series using orthogonal relations.SIAM, J. Appl. Math. Vol. 18, No. 2 (1970), 372-379. MR 0261299, 10.1137/0118031
Reference: [5] A. Erdelyi, el.: Higher transcendental functions.Vol. I, Bateman Manuscript Project, McGraw-Hill, Inc. (1954).
Reference: [6] H. S. Carslaw J. C. Jaeger: Conduction of heat in a solid.2nd. edition. Oxford University Press (1959).
Reference: [7] R. K. Chakraborty: Conduction of heat in a semi-infinite strip and circular boundary.Journal of Tech. (in print). Zbl 0502.35019
.

Files

Files Size Format View
AplMat_27-1982-3_3.pdf 1.540Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo