Previous |  Up |  Next

Article

Title: Some properties and applications of probability distributions based on MacDonald function (English)
Author: Kropáč, Oldřich
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 27
Issue: 4
Year: 1982
Pages: 285-302
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: In the paper the basic analytical properties of the MacDonald function (the modified Bessel function of the second kind) are summarized and the properties of some subclasses of distribution functions based on MacDonald function, especially of the types $x^nK_n(x), x\geq 0, \left|x\right|^n K_n(x\left|x\right|), x\in \bold R$ and $x^{n+1}K_n(x), x\geq 0$ are discussed. The distribution functions mentioned are useful for analytical modelling of composed (mixed) distributions, especially for products of random variables having distributions of the exponential type. Extensive and useful applications may be found in the field of non-Gaussian random processes, the marginal and joint probability densities of which and of their envelopes may be described by means of the types discussed. (English)
Keyword: MacDonald function
Keyword: Bessel function of the second kind
Keyword: composed distributions
MSC: 33A40
MSC: 33C10
MSC: 60E99
MSC: 62E15
idZBL: Zbl 0491.60021
idMR: MR0666907
DOI: 10.21136/AM.1982.103973
.
Date available: 2008-05-20T18:19:44Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103973
.
Reference: [1] H. Bateman A. Erdélyi: Higher transcendental functions.Vol. 2. New York, McGraw-Hill, 1953. MR 0058756
Reference: [2] H. Bateman A. Erdélyi: Tables of integral transforms, Vol. I, II.New York, McGraw-Hill, 1954. MR 0061695
Reference: [3] K. C. Chu: Estimation and decision for linear systems with elliptical random processes.IEEE Trans. Autom. Control, AC-18, 1973, pp. 499-505. Zbl 0263.93049, MR 0441500, 10.1109/TAC.1973.1100374
Reference: [4] C. C. Craig: On the frequency function xy.Ann. Math. Statist., 7, 1936, pp. 1 - 15. 10.1214/aoms/1177732541
Reference: [5] E. M. Elderton: Table of the product moment $T_m$ function.Biometrika, 21, 1929, pp. 194-201. 10.1093/biomet/21.1-4.194
Reference: [6] Jahnke-Emde-Lösch: Tafeln höherer Funktionen.Stuttgart, Teubner, 1960.
Reference: [7] N. L. Johnson S. Kotz: Continuous multivariate distributions.New York, J. Wiley, 1972.
Reference: [8] O. Kropáč: Relations between distributions of random vibratory processes and distributions of their envelopes.Aplik. Matem., 17, 1972, pp. 75-112. MR 0299032
Reference: [9] O. Kropáč: Rozdělení s náhodnými parametry a jejich inženýrské aplikace.Strojn. Čas. 33, 1980, pp. 597-622.
Reference: [10] O. Kropáč: A unified model for non-stationary and/or non-Gaussian random processes.J. Sound Vibr., 79, 1981, pp. 11 - 21. MR 0634635, 10.1016/0022-460X(81)90326-6
Reference: [11] O. Kropáč: Some general properties of elliptically symmetric random processes.Kybernetika, 17, 1981, pp. 401-412. MR 0648212
Reference: [12] S. Kullback: The distribution laws of the difference and quotient of variables independently distributed in Pearson III laws.Ann. Math. Statist., 7, 1936, pp. 51 - 53. 10.1214/aoms/1177732546
Reference: [13] D. K. McGraw J. F. Wagner: Elliptically symmetric distributions.IEEE Trans. Inform. Theory, IT-14, 1968, pp. 110-120. 10.1109/TIT.1968.1054081
Reference: [14] K. Pearson G. B. Jeffery E. M. Elderton: On the distribution of the first product moment-coefficient, in samples drawn from an indefinitely large normal population.Biometrika, 21, 1929, pp. 164-193. 10.1093/biomet/21.1-4.164
Reference: [15] K. Pearson S. A. Stouffer F. N. David: Further applications in statistics of the $T_m (x)$ Bessel function.Biometrika, 24, 1932, pp. 293 - 350.
Reference: [16] D. Teichrow: The mixture of normal distributions with different variances.Ann. Math. Statist., 28, 1957, pp. 510-512. MR 0089551, 10.1214/aoms/1177706981
Reference: [17] G. N. Watson: A treatise on the theory of Bessel functions.Cambridge, Univ. Press, 1944 (2nd edit.). Zbl 0063.08184, MR 0010746
.

Files

Files Size Format View
AplMat_27-1982-4_7.pdf 2.182Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo