Previous |  Up |  Next


Title: A comparison of the accuracy of the finite-difference solution to boundary value problems for the Helmholtz equation obtained by direct and iterative methods (English)
Author: Červ, Václav
Author: Segeth, Karel
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 27
Issue: 5
Year: 1982
Pages: 375-390
Summary lang: English
Summary lang: Czech
Summary lang: Russian
Category: math
Summary: The development of iterative methods for solving linear algebraic equations has brought the question of when the employment of these methods is more advantageous than the use of the direct ones. In the paper, a comparison of the direct and iterative methods is attempted. The methods are applied to solving a certain class of boundary-value problems for elliptic partial differential equations which are used for the numerical modeling of electromagnetic fields in geophysics. The numerical experiments performed are studied from the point of view of the time and storage requirements and the achieved accuracy of the solution. (English)
Keyword: comparison
Keyword: electromagnetic fields in geophysics
Keyword: numerical experiments
Keyword: accuracy
Keyword: Helmholtz equation
MSC: 35J05
MSC: 65F05
MSC: 65F10
MSC: 65N20
MSC: 65N22
MSC: 86A25
idZBL: Zbl 0511.65074
idMR: MR0674982
Date available: 2008-05-20T18:20:11Z
Last updated: 2015-07-08
Stable URL:
Reference: [1] I. Babuška R. B. Kellog: Numerical solution of the neutron diffusion equation in the presence of corners and interfaces.Numerical Reactor Calculations. International Atomic Energy Agency, Vienna 1972, 473 - 486.
Reference: [2] V. Bezvoda K. Segeth: Mathematical modeling of electromagnetic fields. The Use of Finite Element Method and Finite Difference Method in Geophysics.(Proceedings of Summer School, Liblice 1977.) Geofyzikální ústav ČSAV, Praha 1978, 329-332.
Reference: [3] B. A. Carre: The determination of the optimum accelerating factor for successive overrelaxation.Comput. J. 4 (1961), 73 - 78. 10.1093/comjnl/4.1.73
Reference: [4] V. Červ: Numerical modelling of geoelectric structures using the Galerkin and finite element methods.Studia geoph. et geod. 22 (1978), 283 - 294.
Reference: [5] V. Červ O. Praus: Numerical modelling in laterally inhomogeneous geoelectrical structures.Studia geoph. et geod. 22 (1978), 74-81.
Reference: [6] J. H. Coggon: Electromagnetic and electrical modelling of induction effects in laterally non-uniform conductors.Phys. Earth Planet. Inter. 10 (1975), 265.
Reference: [7] P. Concus G. H. Golub: Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations.SIAM J. Numer. Anal. 10 (1973), 1103 - 1120. MR 0341890, 10.1137/0710092
Reference: [8] F. W. Dorr: The direct solution of the discrete Poisson equation on a rectangle.SIAM Rev. 12 (1970), 248-263. Zbl 0208.42403, MR 0266447, 10.1137/1012045
Reference: [9] F. W. Jones L. J. Pascoe: A general computer program to determine the perturbation of alternating electric currents in a two-dimensional model of a region of uniform conductivity with an embedded inhomogeneity.Geophys. J. Roy. Astronom. Soc. 23 (1971), 3.
Reference: [10] F. W. Jones A. T. Price: The perturbation of alternating geomagnetic fields by conductivity anomalies.Geophys. J. Roy. Astronom. Soc. 20 (1970), 317. 10.1111/j.1365-246X.1970.tb06073.x
Reference: [11] I. Marek: On the SOR method for solving linear equations in Banach spaces.Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 11 (1969), 335-341. Zbl 0221.65096, MR 0278086
Reference: [12] A. Ralston: A first course in numerical analysis.McGraw-Hill, New York 1965. Zbl 0139.31603, MR 0191070
Reference: [13] G. Strong G. J. Fix: An analysis of the finite element method.Prentice-Hall, Englewood Cliffs, N. J., 1973. MR 0443377
Reference: [14] R. S. Varga: Matrix iterative analysis.Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 0158502
Reference: [15] J. T. Weaver: The electromagnetic field within a discontinuous conductor with reference to geomagnetic micropulsations near a coastline.Canad. J. Phys. 41 (1963), 484-495. Zbl 0113.43702, 10.1139/p63-051
Reference: [16] D. M. Young: Iterative solution of large linear systems.Academic Press, New York 1971. Zbl 0231.65034, MR 0305568


Files Size Format View
AplMat_27-1982-5_7.pdf 2.413Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo