Previous |  Up |  Next

Article

Title: Further convergence results for two quadrature rules for Cauchy type principal value integrals (English)
Author: Ioakimidis, Nikolaos I.
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 27
Issue: 6
Year: 1982
Pages: 457-466
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: New convergence and rate-of-convergence results are established for two well-known quadrature rules for the numerical evaluation of Cauchy type principal value integrals along a finite interval, namely the Gauss quadrature rule and a similar interpolatory quadrature rule where the same nodes as in the Gauss rule are used. The main result concerns the convergence of the interpolatory rule for functions satisfying the Hölder condition with exponent less or equal to $\frac12$. The results obtained here supplement a series of previous results on the convergence of the aforementioned quadrature rules. (English)
Keyword: rate-of-convergence
Keyword: quadrature rules
Keyword: Cauchy type principal value integrals
Keyword: finite interval
Keyword: Gauss quadrature
Keyword: interpolatory quadrature
MSC: 30E20
MSC: 65D05
MSC: 65D30
MSC: 65D32
idZBL: Zbl 0518.65009
idMR: MR0678115
DOI: 10.21136/AM.1982.103992
.
Date available: 2008-05-20T18:20:37Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103992
.
Reference: [1] E. W. Cheney: Introduction to Approximation Theory.McGraw-Hill, New York, 1966. Zbl 0161.25202, MR 0222517
Reference: [2] D. Elliott: On the Convergence of Hunter's Quadrature Rule for Cauchy Principal Value Integrals.Nordisk Tidskrift for Informationsbehandling (BIT), 1979, Vol. 19, pp. 457-462. Zbl 0418.65011, MR 0559954
Reference: [3] D. Elliott, D. F. Paget: On the Convergence of a Quadrature Rule for Evaluating Certain Cauchy Principal Value Integrals.Numerische Mathematik, 1975, Vol. 23, pp. 311 - 319. Zbl 0313.65019, MR 0380215, 10.1007/BF01438258
Reference: [4] D. Elliott, D. F. Paget: On the Convergence of a Quadrature Rule for Evaluating Certain Cauchy Principal Value Integrals: An Addendum.Numerische Mathematik, 1976, Vol. 25, pp. 287-289. Zbl 0321.65017, MR 0411131, 10.1007/BF01399417
Reference: [5] D. Elliott, D. F. Paget: Gauss Type Quadrature Rules for Cauchy Principal Value Integrals.Mathematics of Computation, 1979, Vol. 33, pp. 301 - 309. Zbl 0415.65019, MR 0514825, 10.1090/S0025-5718-1979-0514825-2
Reference: [6] G. Freud: Orthogonal Polynomials.1st English ed. Pergamon Press, Oxford, 1971. Zbl 0226.33014, MR 0294981
Reference: [7] D. B. Hunter: Some Gauss-Type Formulae for the Evaluation of Cauchy Principal Values of Integrals.Numerische Mathematik, 1972, Vol. 19, pp. 419-424. Zbl 0231.65028, MR 0319355, 10.1007/BF01404924
Reference: [8] N. I. Ioakimidis: General Methods for the Solution of Crack Problems in the Theory of Plane Elasticity.Doctoral Thesis at the National Technical University of Athens, Athens, 1976. [Available from University Microfilms, Ann Arbor, Michigan; Order No. 76-21, 056.] Zbl 0351.73109, MR 0521392
Reference: [9] N. I. Ioakimidis, P. S. Theocaris: On the Numerical Evaluation of Cauchy Principal Value Integrals.Revue Roumaine des Sciences Techniques - Série de Mécanique Appliquée, 1977, Vol. 22, pp. 803-818. Zbl 0376.65009, MR 0483321
Reference: [10] A. I. Kalandiya: Mathematical Methods of Two-dimensional Elasticity.1st English ed. Mir Publishers, Moscow, 1975. MR 0400846
Reference: [11] A. A. Korneichuk: Quadrature Formulae for Singular Integrals.In: Numerical Methods for the Solution of Differential and Integral Equations and Quadrature Formulae, Moscow, Nauka, 1964, pp. 64-74 (in Russian).
Reference: [12] D. F. Paget, D. Elliott: An Algorithm for the Numerical Evaluation of Certain Cauchy Principal Value Integrals.Numerische Mathematik, 1972, Vol. 19, pp. 373 - 385. Zbl 0229.65091, MR 0366004, 10.1007/BF01404920
Reference: [13] T. J. Rivlin: An Introduction to the Approximation of Functions.1st ed. Blaisdell, Waltham, Massachusetts, 1969. Zbl 0189.06601, MR 0249885
Reference: [14] D. G. Sanikidze: On a Uniform Estimation of Approximation of Singular Integrals with Chebyshev's Weight Function by Sums of Interpolating Type.Soobščenija Akademii Nauk Gruzinskoī SSR, 1974, Vol. 75 (No. 1), pp. 53-55 (in Russian). MR 0358242
Reference: [15] M. A. Sheshko: On the Convergence of Quadrature Processes for a Singular Integral.Soviet Mathematics (Izvestija Vysših Učebnyh Zavedeniī. Matematika), 1976, Vol. 20 (No. 12), pp. 86-94.
Reference: [16] G. Szegö: Orthogonal Polynomials.revised ed. American Mathematical Society, New York, 1959. MR 0106295
Reference: [17] P. S. Theocaris, G. J. Tsamasphyros: On the Convergence of a Gauss Quadrature Rule for Evaluation of Cauchy Type Singular Integrals.Nordisk Tidskrift for Informationsbehandling (BIT), 1977, Vol. 17, pp. 458-464. Zbl 0391.65004, MR 0468120
.

Files

Files Size Format View
AplMat_27-1982-6_7.pdf 1.557Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo