Previous |  Up |  Next

Article

Title: On periodic solution of a nonlinear beam equation (English)
Author: Kopáčková, Marie
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 28
Issue: 2
Year: 1983
Pages: 108-115
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: the existence of an $\omega$-periodic solution of the equation $\frac {\partial^2u}{\partial t^2} + \alpha \frac {\partial^4u} {\partial x^4} + \gamma \frac {\partial^5u}{\partial x^4\partial t} - \tilde{\gamma} \frac {\partial^3u}{\partial x^2\partial t} + \delta \frac {\partial u}{\partial t} - \left[\beta + \aleph\int^n_0{\left(\frac {\partial u}{\partial x}\right)}^2 (\cdot,\xi)d\xi + \sigma \int^n_0 \frac {\partial^2u}{\partial x \partial t} (\cdot,\xi) \frac {\partial u}{\partial x}(\cdot,\xi)d \xi \right] \frac {\partial^2u}{\partial x^2}=f$ sarisfying the boundary conditions $u(t,0)=u(t,\pi)=\frac{\partial^2u}{\partial x^2}\left(t,0\right)=\frac{\partial^2u}{\partial x^2}\left(t,\pi\right)=0$ is proved for every $\omega$-periodic function $f\in C\left(\left[0,\omega\right],L_2\right)$. (English)
Keyword: periodic solution
Keyword: nonlinear beam equation
Keyword: existence
MSC: 35B10
MSC: 35G30
MSC: 45K05
MSC: 47A10
MSC: 73K12
MSC: 74K10
idZBL: Zbl 0533.35003
idMR: MR0695184
DOI: 10.21136/AM.1983.104011
.
Date available: 2008-05-20T18:21:27Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104011
.
Reference: [1] V. B. Litvinov, Ju. V. Jadykin: Vibration of Extensible Thin Bodies in Transversal Flow.Dokl. Akad. Nauk Ukrain. SSR, Ser. A, No 4 (1981) 47-50.
Reference: [2] J. M. Ball: Stability Theory for an Extensible Beam.J. Differential Equations 14 (1973), 399-418. Zbl 0247.73054, MR 0331921, 10.1016/0022-0396(73)90056-9
Reference: [3] T. Narazaki: On the Time Global Solutions of Perturbed Beam Equations.Proc. Fac. Sci. Tokai Univ. 16 (1981), 51-71. Zbl 0474.35010, MR 0632661
Reference: [4] V. Lovicar: Periodic Solutions of Nonlinear Abstract Second Order Equations with Dissipative Terms.Čas. Pěst. Mat. 102 (1977), 364-369. Zbl 0369.34017, MR 0508656
Reference: [5] N. Dunford J. T. Schwartz: Linear operators I.(Intersci. Publ. New York-London) 1958. MR 0117523
.

Files

Files Size Format View
AplMat_28-1983-2_5.pdf 1.119Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo