Previous |  Up |  Next

Article

Title: Bivariate gamma distribution as a life test model (English)
Author: Lingappaiah, Giri S.
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 3
Year: 1984
Pages: 182-188
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The bivariate gamma distribution is taken as a life test model to analyse a series system with two dependent components $x$ and $y$. First, the distribution of a function of $x$ and $y$, that is, minimum $(x,y)$, is obtained. Next, the reliability of the component system is evaluated and tabulated for various values of the parameters. Estimates of the parameters are also obtained by using Bayesian approach. Finally, a table of the mean and variance of minimum $(x,y)$ for various values of the parameters involved is presented. (English)
Keyword: bivariate gamma distribution
Keyword: life test model
Keyword: series system
Keyword: dependent components
Keyword: reliability
Keyword: estimates
Keyword: Bayesian approach
Keyword: table
Keyword: mean
Keyword: variance
MSC: 62H10
MSC: 62N05
idZBL: Zbl 0549.62065
idMR: MR0747210
DOI: 10.21136/AM.1984.104083
.
Date available: 2008-05-20T18:24:43Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104083
.
Reference: [1] S. D. Al-Saadi D. F. Serimshaw D. H. Young: Tests for independence of exponential variables.Journal of Statistical Computation and Simulation, Vol. 9 (1979), 217-233. MR 0539879, 10.1080/00949657908810318
Reference: [2] S. D. Al-Saadi D. H. Young: Estimators for the correlation coefficient in a bivariate exponential distribution.Journal of Statistical Computation and Simulation, Vol. 11 (1980), 13-20. 10.1080/00949658008810386
Reference: [3] F. Downton: Bivariate exponential distribution in reliability theory.Journal of Royal Statistical Society-B, Vol. 32 (1970), 408-417. MR 0287652
Reference: [4] E. J. Gumbel: Bivariate exponential distributions.Journal of American Statistical Association, Vol. 55 (1960), 698-707. Zbl 0099.14501, MR 0116403, 10.1080/01621459.1960.10483368
Reference: [5] J. F. Lawless: A prediction problem concerning samples from the exponential disribution with application to life testing.Technometrics, Vol. 13 (1971), 725-730. 10.1080/00401706.1971.10488844
Reference: [7] G. S. Lingappaiah: Prediction in exponential life testing.Canadian Journal of Statistics, Vol. 1 (1973), 113-117. Zbl 0334.62042, MR 0400599, 10.2307/3314650.o
Reference: [7b] G. S. Lingappaiah: Prediction in samples from the gamma distribution as applied to life testing.The Australian Journal of Statistics, Vol. 16 (1974), 30-32. Zbl 0318.62080, MR 0365975, 10.1111/j.1467-842X.1974.tb00910.x
Reference: [8] G. S. Lingappaiah: Bayesian approach to the prediction problem in complete and censored samples from the gamma and exponential populations.Communications in Statistics, Vol. A8 (1979), 1403-1424. Zbl 0416.62073, MR 0547405, 10.1080/03610927908827839
Reference: [9] G. S. Lingappaiah: Intermittent life testing and Bayesian approach to prediction with spacings in the exponential model.STATISTICA, Vol. 40 (1980), 477-490. Zbl 0472.62101, MR 0612467
Reference: [10] S. P. Mukherjee B. C. Samsal: Life distributions of coherent dependent systems.Journal of Indian Statistical Association, Vol. 26 (1977), 39-52.
Reference: [11] P. A. P. Moran: Statistical inference in bivariate gamma distributions.Biometrika, Vol. 56 (1969), 627-634. MR 0254948, 10.1093/biomet/56.3.627
Reference: [12] D. Vere-Jones: The infinite divisibility of a bivariate gamma distribution.Sankhya-A, Vol. 29 (1967), 421-422. MR 0226704
.

Files

Files Size Format View
AplMat_29-1984-3_3.pdf 1.372Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo