Previous |  Up |  Next

Article

Title: The existence and uniqueness theorem in Biot's consolidation theory (English)
Author: Ženíšek, Alexander
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 3
Year: 1984
Pages: 194-211
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: Existence and uniqueness theorem is established for a variational problem including Biot's model of consolidation of clay. The proof of existence is constructive and uses the compactness method. Error estimates for the approximate solution obtained by a method combining finite elements and Euler's backward method are given. (English)
Keyword: Existence
Keyword: uniqueness
Keyword: variational problem
Keyword: Biot’s model
Keyword: compactness method
Keyword: approximate solution
Keyword: finite elements
Keyword: Euler’s backward method
MSC: 35A05
MSC: 35A15
MSC: 35A35
MSC: 35G05
MSC: 65N30
MSC: 73Q05
idZBL: Zbl 0557.35005
idMR: MR0747212
DOI: 10.21136/AM.1984.104085
.
Date available: 2008-05-20T18:24:49Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104085
.
Reference: [1] M. A. Biot: General theory of three-dimensional consolidation.J. Appl. Phys. 12 (1941), p. 155. 10.1063/1.1712886
Reference: [2] J. R. Booker: A numerical method for the solution of Bioťs consolidation theory.Quart. J. Mech. Appl. Math. 26 (1973), 457-470. 10.1093/qjmam/26.4.457
Reference: [3] J. Céa: Optimization.Dunod, Paris, 1971. Zbl 0231.94026, MR 0298892
Reference: [4] A. Kufner O. John S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [5] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod and Gauthier-Villars, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [6] R. Теmаm: Navier-Stokes Equations.North-Holland, Amsterdam, 1977.
Reference: [7] M. Zlámal: Curved elements in the finite element method. I.SIAM J. Numer. Anal. 10 (1973), 229-240. MR 0395263, 10.1137/0710022
Reference: [8] M. Zlámal: Finite element solution of quasistationary nonlinear magnetic field.R. A.I.R.O. Anal. Num. 16 (1982), 161-191. MR 0661454
Reference: [9] A. Ženíšek: Finite element methods for coupled thermoelasticity and coupled consolidation of clay.(To appear.) MR 0743885
Reference: [10] K. Rektorys: The Method of Discretization in Time and Partial Differential Equations.D. Reidel Publishing Company, Dordrecht - SNTL, Prague, 1982. Zbl 0522.65059, MR 0689712
.

Files

Files Size Format View
AplMat_29-1984-3_5.pdf 2.592Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo