Previous |  Up |  Next

Article

Title: On the topological charge conservation in the three-dimensional ${\rm O}(3)$ $\sigma$-model. (English)
Author: Dittrich, Jaroslav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 5
Year: 1984
Pages: 367-371
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: A field of three-component unit vectors on the $2+1$ dimensional spacetime is considered. Two field configurations with different values of the topological charge cannot be connected by the path of field configurations with a finite Euclidean action. Therefore there is no transition between them. The initial and final configurations are assumed to be continuous at infinity. The asymptotic behaviour of intermediate configurations may be arbitrary. The proof is based on the properties of the degree of mapping. (English)
Keyword: field theory
MSC: 37J99
MSC: 53B30
MSC: 53C20
MSC: 58E20
MSC: 81E13
idZBL: Zbl 0568.58019
idMR: MR0772271
DOI: 10.21136/AM.1984.104106
.
Date available: 2008-05-20T18:25:47Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104106
.
Reference: [1] A. M. Perelomov: Instanton-like solutiors in chiral models.Physica, 4D(1981), 1 - 25. MR 0636468
Reference: [1b] A. M. Переломов: Решения типа инстантонов в киральных моделях.Успехи физических наук, 134 (1981), 577-609. Zbl 1170.01413, MR 0669201
Reference: [2] В. А. Фатеев И. В. Фролов А. С. Шварц: Квантовые флуктуации инстантонов в двумерной нелинейной анизотропной $\sigma$-модели.Ядерная физика, 32 (1980), 299-300. Zbl 1059.81562
Reference: [2b] A. Kundu: Instanton solutions in the anisotropic $\sigma$-model.Phys. Letters, 110 B (1982), 61 - 63. MR 0647884, 10.1016/0370-2693(82)90952-2
Reference: [3] J. Dittrich: Asymptotic behaviour of the classical scalar fields ard topological charges.Commun. Math. Phys., 82 (1981), 29-39. MR 0638512, 10.1007/BF01206944
Reference: [4] M. Requardt: How conclusive is the scaling argument? The conrection between local and global scale variations of finite action solutiors of classical Euler-Lagrange equations.Commun. Math. Phys., 80 (1981), 369-379. MR 0626706, 10.1007/BF01208276
Reference: [5] E. Elizalde: On the topological structure of massive $CP^n$ sigma models.Phys. Letters, 91B (1980), 103-106. MR 0566898, 10.1016/0370-2693(80)90671-1
Reference: [6] L. Schwartz: Analyse mathématique.Hermann, Paris 1967. Chapter VI. Zbl 0171.01301
Reference: [7] В. А. Рохлин Д. Б. Фукс: Начальный курс топологии.Геометрические главы. Наука, Москва 1977. Zbl 1225.01071
.

Files

Files Size Format View
AplMat_29-1984-5_6.pdf 895.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo