Previous |  Up |  Next

Article

Title: Subset selection of the largest location parameter based on $L$-estimates (English)
Author: Hustý, Jaroslav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 6
Year: 1984
Pages: 397-410
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The problem of selecting a subset of polulations containing the population with the largest location parameter is considered. As a generalization of selection rules based on sample means and on sample medians, a rule based on $L$-estimates of location is proposed. This rule is strongly monotone and minimax, the risk being the expected subset size, provided the underlying density has monotone likelihood ratio. The problem of fulfilling the $P*$-condition is solved explicitly only asymptotically, under the asymptotic normality of the $L$-estimates used. However, after replacing their asymptotic variance by its estimate, the solution becomes distribution free. (English)
Keyword: expected subset size risk
Keyword: largest location parameter
Keyword: Gupta-type rule
Keyword: $L$-estimates
Keyword: linear combinations of order statistics
Keyword: monotone likelihood ratio
Keyword: minimax
Keyword: asymptotic normality
MSC: 62C99
MSC: 62F07
MSC: 62F35
MSC: 62G30
idZBL: Zbl 0566.62019
idMR: MR0767493
DOI: 10.21136/AM.1984.104114
.
Date available: 2008-05-20T18:26:08Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104114
.
Reference: [1] R. E. Balow S. S. Gupta: Selection procedures for restricted families of probability distributions.Ann. Math. Statist. 40 (1969), 905 - 917. MR 0240912, 10.1214/aoms/1177697596
Reference: [2] N. S. Bartlett Z. Govindarajulu: Some distribution-free statistics and their application to the selection problem.Ann. Inst. Statist. Math. 20 (1968), 79-97. MR 0226801, 10.1007/BF02911626
Reference: [3] R. E. Bechhofer: A single-sample multiple decision procedure for ranking means of normal populations with known variances.Ann. Math. Statist. 25 (1954), 16-39. Zbl 0055.13003, MR 0060197, 10.1214/aoms/1177728845
Reference: [4] R. L. Berger: Minimax subset selection for loss measured by subset size.Ann. Statist. 7 (1979), 1333-1338. Zbl 0418.62022, MR 0550155, 10.1214/aos/1176344851
Reference: [5] R. J. Carrol S. S. Gupta: On the probabilities of rankings of k populations.J. Statist. Comput. Simul. 5 (1977), 145-157. MR 0464477, 10.1080/00949657708810147
Reference: [6] R. N. Curnow C. W. Dunnet: The numerical evaluation of certain multivariate normal integrals.Ann. Math. Statist. 33 (1962), 571 - 579. MR 0137234, 10.1214/aoms/1177704581
Reference: [7] S. S. Gupta: On some multiple decision (selection and ranking) rules.Technometrics 7 (1965), 225-245. Zbl 0147.17902, 10.1080/00401706.1965.10490251
Reference: [8] S. S. Gupta A. K. Singh: On rules based on sample medians for selection of the largest location parameter.Commun. Statist. - Theor. Meth. A 9 (1980), 1277-1298. MR 0578557, 10.1080/03610928008827958
Reference: [9] J. Hustý: Ranking and selection procedures for location parameter case based on L-estimates.Apl. mat. 26 (1981), 377-388. MR 0631755
Reference: [10] J. Hustý: Total positivity of the density of a linear combination of order statistics.To appear in Čas. pěst. mat.
Reference: [11] T. J. Santner: A restricted subset selection approach to ranking and selection problems.Ann. Statist. 3 (1975), 334-349. Zbl 0302.62011, MR 0370884, 10.1214/aos/1176343060
Reference: [12] P. K. Sen: An invariance principle for linear combinations of order statistics.Z. Wahrscheinlichkeitstheorie verw. Gebiete 42 (1978), 327-340. Zbl 0362.60022, MR 0483171, 10.1007/BF00533468
Reference: [13] S. M. Stigler: Linear functions of order statistics with smooth weight functions.Ann. Statist. 2 (1974), 676-693. Zbl 0286.62028, MR 0373152, 10.1214/aos/1176342756
.

Files

Files Size Format View
AplMat_29-1984-6_2.pdf 1.905Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo