Previous |  Up |  Next

Article

Title: Slab analogy in theory and practice of conforming equilibrium stress models for finite element analysis of plane elastostatics (English)
Author: Vondrák, Miroslav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 30
Issue: 3
Year: 1985
Pages: 187-217
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The fundamental problem in the application of the principle of complementary energy is the construction of suitable subsets that approximate the set of all statically admissible fields satisfying both the conditions of equilibrium inside the body and the static boundary conditions. The notion "slab analogy" is motivated and the interface conditions for the Airy stress function are established at the contact of two domains. Some spaces of types of conforming equilibrium stress elements, which can be obtained by slab analogy, are investigated. A weak version of the Castigliano principle is established and the approximate variational problem is defined by using equilibrium stress fields. Some subspaces of equilibrium stress elements are introduced and a priori error estimates in the $L^2$-norm (provided the solutions are smooth enough) and convergence results are obtainded from the well-known results for compatible finite elements. (English)
Keyword: plane elastostatics
Keyword: stress equilibrium finite element
Keyword: slab analogy
Keyword: choice of the degrees of freedom
Keyword: normal trace
Keyword: stress tensor
Keyword: complementary energy functional
Keyword: existence
Keyword: convergence
MSC: 73C45
MSC: 73K25
MSC: 74S05
MSC: 74S30
idZBL: Zbl 0577.73067
idMR: MR0789860
DOI: 10.21136/AM.1985.104141
.
Date available: 2008-05-20T18:27:21Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104141
.
Reference: [1] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: An introduction.Elsevier Sci. Publ. Соmр., Amsterdam, Oxford, New York, 1981. MR 0600655
Reference: [2] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland Publ. Соmр., Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [3] B. M. Fraeijs de Veubeke: A course in elasticity.Springer Verlag, New York, Heidelberg, Berlin, 1979. MR 0533738
Reference: [4] V. Girault P. A. Raviart: Finite element approximation of the Navier-Stokes equations.Springer-Verlag, Berlin, Heidelberg, New York, 1979. MR 0548867
Reference: [5] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [6] I. Hlaváček: Variational principles in the linear theory of elasticity for general boundary conditions.Apl. Mat. 12 (1967), 425-448. MR 0231575
Reference: [7] I. Hlaváček: Convergence of an equilibrium finite element model for plane elastosiatics.Apl. Mat. 24 (1979), 427-457. MR 0547046
Reference: [8] I. Hlaváček: Some equilibrium and mixed model in the finite element method.Banach Center Publ., Vol. 3, 1975, 147-165. MR 0514379, 10.4064/-3-1-147-165
Reference: [9] J. Haslinger I. Hlaváček: Convergence of a finite element method based on the dual variational formulations.Apl. Mat. 21 (1976), 43 - 65. MR 0398126
Reference: [10] J. Haslinger I. Hlaváček: Contact between elastic bodies - III. Dual finite Element Analysis.Apl. Mat. 26 (1981), 321-344. MR 0631752
Reference: [11] M. Křížek: Equilibrium elements for the linear elasticity problem.Variational - difference methods in math. phys., Moscow, 1984, 81 - 92.
Reference: [12] G. Sander: Applications of the dual analysis principle.Proceedings of the IUTAM Symp. on High Speed Computing of Elastic Structures, Congrés et Colloques Do l'Université de Liege (1971), 167-207.
Reference: [13] B. F. Veubeke G. Sander: An equilibrium model for plate bending.Internat. J. Solids and Structures 4 (1968), 447-468. 10.1016/0020-7683(68)90049-8
Reference: [14] V. B. Watwood B. J. Hartz: An equilibrium stress field model for the finite element solutions of two-dimensional elastostatic problems.Internat. J. Solides and Structures 4 (1968), 857-873. 10.1016/0020-7683(68)90083-8
Reference: [15] C. Johnson B. Mercier: Some equilibrium finite element methods for two-dimensional elasticity problems.Numer. Math. 30 (1978), 103-116. MR 0483904, 10.1007/BF01403910
Reference: [16] M. Křížek: An equilibrium finite element method in three-dimensional elasticity.Apl. Mat. 27 (1982), 46-75. MR 0640139
Reference: [17] M. Křížek: Conforming equilibrium finite element methods for some elliptic plane problems.R.A.I.R.O. Analyse numérique, vol. 17, No. 1, 1983, 35-65. MR 0695451, 10.1051/m2an/1983170100351
Reference: [18] D. J. Allman: On compatible and equlibrium models with linear stresses for stretching of elastic plates. Energy methods in finite element analysis.John Wiley& Sons Ltd. Chichester, New York, Brisbane, Toronto, 1979. MR 0537002
Reference: [19] B. F. de Veubeke O. C. Zienkiewicz: Strain energy bounds in finite element analysis by slab analogy.J. of Strain Analysis, 1967, vol. 2, No. 4.
Reference: [20] I. Babuška K. Rektorys F. Vyčichlo: Mathematische Elastizitätstheorie der ebenen Probleme.Akademieverlag, Berlin 1960. MR 0115343
Reference: [21] J. H. Michell: On the direct determination of stress in an elastic solid with application to the theory of plates.Proc. Lond. math. Soc. 1899, 31, 100.
.

Files

Files Size Format View
AplMat_30-1985-3_5.pdf 3.855Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo