Previous |  Up |  Next

Article

Title: On the solution of the heat equation with nonlinear unbounded memory (English)
Author: Doktor, Alexandr
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 30
Issue: 6
Year: 1985
Pages: 461-474
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The paper deals with the question of global solution $u,\tau$ to boundary value problem for the system of semilinear heat equation for $u$ and complementary nonlinear differential equation for $\tau$ ("thermal memory"). Uniqueness of the solution is shown and the method of successive approximations is used for the proof of existence of a global solution provided the condition $(\Cal P)$ holds. The condition $(\Cal P)$ is verified for some particular cases (e. g.: bounded nonlinearity, homogeneous Neumann problem (even for unbounded nonlinearities), apriori estimate of the solution holds). (English)
Keyword: heat equation
Keyword: nonlinear unbounded memory
Keyword: uniqueness
Keyword: existence
Keyword: boundary value problem
MSC: 35A05
MSC: 35K20
MSC: 35K55
MSC: 35K60
idZBL: Zbl 0602.35056
idMR: MR0813534
DOI: 10.21136/AM.1985.104175
.
Date available: 2008-05-20T18:28:56Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104175
.
Reference: [1] A. Doktor: Heat transmission and mass transfer in hardening concrete.(In Czech), Research report III-2-3/04-05, VÚM, Praha 1983.
Reference: [2] E. Rastrup: Heat of hydration of conrete.Magazine of Concrete Research, v. 6, no 17, 1954. 10.1680/macr.1954.6.17.79
Reference: [3] K. Rektorys : Nonlinear problem of heat conduction in concrete massives.(In Czech), Thesis MÚ ČSAV, Praha 1961.
Reference: [4] K. Rektorys: The method of discretization in time and partial differential equations.Reidel Co, Dodrecht, Holland 1982. Zbl 0522.65059, MR 0689712
Reference: [5] A. Friedman: Partial differential equations of parabolic type.Prentice-Hall, IMC. 1964. Zbl 0144.34903, MR 0181836
Reference: [6] O. A. Ladyženskaja. V. A. Solonnikov N. N. Uralceva: Linear and nonlinear equations of parabolic type.(In Russian). Moskva 1967.
Reference: [7] T. Kato: Linear evolution equations of "hyperbolic" type.J. Fac. Sci. Univ. Tokyo, Sec. 1, vol. XVII (1970), pyrt 182, 241-258. Zbl 0222.47011, MR 0279626
Reference: [8] G. Duvaut J. L. Lions: Inequalities in mechanics and physics.Springer, Berlin 1976. MR 0521262
Reference: [9] A. Doktor: Mixed problem for semilinear hyperbolic equation of second order with Dirichlet boundary condition.Czech. Math. J., 23 (98), 1973, 95-122. Zbl 0255.35061, MR 0348276
.

Files

Files Size Format View
AplMat_30-1985-6_8.pdf 1.728Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo