Previous |  Up |  Next

Article

Title: Shape optimization in contact problems based on penalization of the state inequality (English)
Author: Haslinger, Jaroslav
Author: Neittaanmäki, Pekka
Author: Tiihonen, Timo
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 31
Issue: 1
Year: 1986
Pages: 54-77
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The paper deals with the approximation of optimal shape of elastic bodies, unilaterally supported by a rigid, frictionless foundation. Original state inequality, describing the behaviour of such a body is replaced by a family of penalized state problems. The relation between optimal shapes for the original state inequality and those for penalized state equations is established. (English)
Keyword: frictionless plane contact
Keyword: linear-elastic sheet
Keyword: rigid foundation
Keyword: shape optimization
Keyword: contact boundary curve
Keyword: minimization of the total potential energy
Keyword: family of penalized state problems
Keyword: existence
Keyword: convergence
Keyword: nonlinear programming problem
Keyword: box constraints
Keyword: linear inequality constraints
Keyword: linear equality constraint
MSC: 49J40
MSC: 49M30
MSC: 73T05
MSC: 73k40
MSC: 74A55
MSC: 74M15
MSC: 74P99
MSC: 74S05
idZBL: Zbl 0594.73109
idMR: MR0836802
DOI: 10.21136/AM.1986.104184
.
Date available: 2008-05-20T18:29:18Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104184
.
Reference: [1] D. Begis R. Glowinski: Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal.Appl. Math. Optim., 2, (1975), 130-169. MR 0443372, 10.1007/BF01447854
Reference: [2] M. P. Bendsoe N. Olhoff J. Sokolowski: Sensitivity analysis of problems of elasticity with unilateral constraints.MAT-report 1984-10, Matematisk institut, Danmarks Tekniske Hojskole, 1984. MR 0802916
Reference: [3] R. L. Benedict J. E. Taylor: Optimal design for elastic bodies in contact.in [13], 1553-1569.
Reference: [4] R. L. Benedict J. Sokolowski J. P. Zolesio: Shape optimization for contact problems.In: Proceedings of 11th IFIP Conference on System Modelling and Optimization (P. Thoft-Cristensen ed.), Springer Verlag, Berlin, LN in Contr. and Inform. Sci. 59, 1984, 790-799. MR 0769714
Reference: [5] R. H. Gallagher O. C. Zienkiewicz ed.: Optimum Structural Design II.John Wiley & Sons, New York, 1983. MR 0718335
Reference: [6] P. E. Gill W. Murray M. H. Wright: Practical Optimization.Academic Press, London, 1981. MR 0634376
Reference: [7] R. Glowinski: Numerical Methods for Nonlinear Variational Problems.Springer Series in Computational Physics, Springer-Verlag, New York, 1984. Zbl 0536.65054, MR 0737005
Reference: [8] J. Haslinger P. Neittaanmäki: Penalty method in design optimization of systems governed by mixed Dirichlet - Signorini boundary value problem.Ann. Fac. Sci. Tolouse, Vol. V, 1983, 199-216. MR 0747190, 10.5802/afst.594
Reference: [9] J. Haslinger P. Neittaanmäki: On optimal shape design of systems governed by mixed Dirichlet - Signorini boundary value problem.Math. Meth. Appl. Sci. 9, (1985) (to appear). MR 0845923
Reference: [10] J. Haslinger P. Neittaanmäki: On the existence of optimal shape in contact problems.Numer. Funct. Anal. and Optimiz., 7 (2&3), 107-124, 1984-85. MR 0767377
Reference: [11] J. Haslinger P. Neittaanmäki T. Tiihonen: On optimal shape of an elastic body on a rigid foundation.in: Proceedings of MAFELAP V, (J. R. Whitcman ed.) Academic Press.
Reference: [12] E. J. Haug J. S. Arora: Applied optimal design, mechanical and structural systems.Wiley - Interscience Publ., New York, 1979.
Reference: [13] E. J. Haug J. Cea ed.: Optimization of Distributed Parameter Structures.Nato Advanced Study Institutes Series, Series E, Alphen aan den Rijn: Sijthoff & Noordhoff, 1981.
Reference: [14] E. J. Haug B. Rousselet: Design sensitivity analysis of eigenvalue variations.in [13], 1371 to 1396. MR 0690999
Reference: [15] I. Hlaváček I. Bock J. Lovíšek: Optimal control of variational inequalities with applications to structural analysis.Part I, Optimal design of a beam with unilateral supports. Part II, Local optimization of the stress of a beam. Part III, Optimal design of an elastic plate, Appl. Math. Optimiz.
Reference: [16] I. Hlaváček J. Haslinger J. Nečas J. Lovíšek: Numerical solution of variational inequalities.(in Slovak), ALFA, SNTL, 1982, English translation, (to appear). MR 0755152
Reference: [17] I. Hlaváček J. Nečas: Optimization of the domain in elliptic unilateral boundary value problems by finite element method.R.A.I.R.O., Num. Anal., 16 (1982), 351-373. MR 0684830
Reference: [18] V. Komkov, ed.: Sensitivity of Functionals with Applications to Engineering Sciences.Lecture Notes in Mathematics, 1086, Springer Verlag, Berlin 1984. Zbl 0539.00022, MR 0791769
Reference: [19] P. Neittaanmäki T. Tiihonen: Sensitivity analysis for a class of shape design problems.Ber. Univ. Jyväskylä Math. Inst., (to appear). MR 0793016
Reference: [20] O. Pironneau: Optimal shape design for elliptic systems.Springer Series in Comput. Physics, Springer Verlag, New York, 1984. Zbl 0534.49001, MR 0725856
Reference: [21] J. Sokolowski: Sensitivity analysis of a class of variational inequalities.in [13], 1600-1605. MR 0691007
Reference: [22] J. Sokolowski J. P. Zolesio: Shape sensitivity analysis for variational inequalities.in: Proceedings of 10th IFIP Conference, (P. Thoft-Christensen, ed.). Springer-Verlag, Berlin, LN in Contr. and Inform. Sci., 38, 1982, 399-407. MR 1215733
Reference: [23] J. Р. Zolesio: The material derivative (or speed) method for shape optimization.in [13], 1089-1151. Zbl 0517.73097, MR 0690991
Reference: [24] J. A. Nitsche: On Korn's inequality.R.A.I.R.O. Analyse numérique/Numerical analysis, vol. 15, No 3, 1981, 237-248. MR 0631678
.

Files

Files Size Format View
AplMat_31-1986-1_5.pdf 2.834Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo