Previous |  Up |  Next

Article

Title: Regions of stability for ill-posed convex programs: An addendum (English)
Author: Zlobec, Sanjo
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 31
Issue: 2
Year: 1986
Pages: 109-117
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The marginal value formula in convex optimization holds in a more restrictive region of stability than that recently claimed in the literature. This is due to the fact that there are regions of stability where the Lagrangian multiplier function is discontinuous even for linear models. (English)
Keyword: convex optimization
Keyword: marginal value formula
Keyword: bi-convex mathematical model
Keyword: regions of stability
Keyword: Lagrange multiplier
MSC: 65K05
MSC: 90C25
MSC: 90C31
idZBL: Zbl 0633.65054
idMR: MR0837472
DOI: 10.21136/AM.1986.104191
.
Date available: 2008-05-20T18:29:36Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104191
.
Reference: [1] I. I. Eremin N. N. Astafiev: Introduction to the Theory of Linear and Convex Programming.Nauka, Moscow, 1976. (In Russian.) MR 0475825
Reference: [2] V. G. Karmanov: Mathematical Programming.Nauka, Moscow, 1975. (In Russian.) Zbl 0349.90075, MR 0411559
Reference: [3] J. Semple S. Zlobec: Continuity of the Lagrangian multiplier function in input optimization.Mathematical Programming, (forthcoming).
Reference: [4] L. I. Trudzik: Optimization in Abstract Spaces.Ph. D. Thesis, University of Melbourne, 1983.
Reference: [5] S. Zlobec: Regions of stability for ill-posed convex programs.Aplikace Matematiky, 27 (1982), 176-191. Zbl 0482.90073, MR 0658001
Reference: [6] S. Zlobec: Characterizing an optimal input in perturbed convex programming.Mathematical Programming, 25 (1983), 109-121. Zbl 0505.90077, MR 0679256, 10.1007/BF02591721
Reference: [7] S. Zlobec: Characterizing an optimal input in perturbed convex programming: An addendum.(In preparation.)
Reference: [8] S. Zlobec: Input optimization: I. Optimal realizations of mathematical models.Mathematical Programming 31 (1985). Zbl 0589.90068, MR 0783391, 10.1007/BF02591948
Reference: [9] S. Zlobec: Input optimization: II. A numerical method.(In preparation.)
Reference: [10] S. Zlobec A. Ben-Israel: Perturbed convex programming: Continuity of optimal solutions and optimal values.Operations Research Verfahren XXXI (1979), 737-749. MR 0548525
Reference: [11] S. Zlobec R. Gardner A. Ben-Israel: Regions of stability for arbitrarily perturbed convex programs.in: Mathematical Programming with Data Perturbations I (A. Fiacco, editor), M. Dekker, New York (1982), 69-89. MR 0652938
.

Files

Files Size Format View
AplMat_31-1986-2_3.pdf 868.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo