Full entry |
PDF
(2.9 MB)
Feedback

optimal design; concentrated forces and moments; continuous load; cost functional; $H^2$-norm of the deflection curve; $L^2$-norm of the normal stress; primary and dual formulations; elastic beam; elastic foundation; existence; convergence

References:

[1] M. S. Bazaraa C. M. Shetty: **Nonlinear Programming, Theory and Algorithms**. (Russian translation - Mir, Moskva 1982.) MR 0671086

[2] D. Begis R. Glowinski: **Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés**. Applied Mathematics & Optimization, 2 (1975), 130-169. DOI 10.1007/BF01447854 | MR 0443372

[3] R. Courant D. Hilbert: **Methoden der matematischen Physik I**. Springer-Verlag 1968, 3. Auflage. MR 0344038

[4] S. Fučík J. Milota: **Mathematical Analysis II**. (Czech - University mimeographed texts.) SPN Praha 1975.

[5] I. Hlaváček: **Optimization of the shape of axisymmetric shells**. Aplikace matematiky, 28 (1983), 269-294. MR 0710176

[6] I. Hlaváček I. Bock J. Lovíšek: **Optimal control of a variational inequality with applications to structural analysis. Optimal design of a beam with unilateral supports**. Applied Mathematics & Optimization, 1984, 111-143. DOI 10.1007/BF01442173 | MR 0743922

[7] J. Chleboun: **Optimal Design of an Elastic Beam on an Elastic Basis**. Thesis (Czech). MFF UK Praha, 1984.

[8] J. Nečas I. Hlaváček: **Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction**. Elsevier, Amsterdam, 1981. MR 0600655

[9] S. Timoshenko: **Strength of Materials, Part II**. D. Van Nostrand Company, Inc. New York 1945. (Czech translation, Technicko-vědecké nakladatelství, Praha 1951.)