Previous |  Up |  Next

Article

Title: Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems (English)
Author: Kačur, Jozef
Author: Ženíšek, Alexander
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 31
Issue: 3
Year: 1986
Pages: 190-223
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The authors study problems of existence and uniqueness of solutions of various variational formulations of the coupled problem of dynamical thermoelasticity and of the convergence of approximate solutions of these problems. First, the semidiscrete approximate solutions is defined, which is obtained by time discretization of the original variational problem by Euler's backward formula. Under certain smoothness assumptions on the date authors prove existence and uniqueness of the solution and establish the rate of convergence $O(\Delta t^{1/2})$ of Rothe's functions in the spaces $C(I;W\frac12(\Omega))$ and $C(I;L_2(\Omega))$ for the displacement components and the temperature, respectively. Regularity of solutions is discussed. In Part 2 the authors define the fully discretized solution of the original variational problem by Euler's backward formula and the simplest finite elements. Convergence of these approximate solutions is proved. In Part 3, the weakest assumptions possible are imposed onto the data, which corresponds to a different definition of the variational solution. Existence and uniqueness of the variational solution, as well as convergence of the fully discretized solutions, are proved. (English)
Keyword: Euler's backward formula
Keyword: regularity
Keyword: Rothe's method
Keyword: coupled consolidation of clay
Keyword: coupled dynamical thermoelasticity
Keyword: convergence
Keyword: semidiscrete approximate solutions
Keyword: time discretization
Keyword: discretization in space
Keyword: finite element method
Keyword: weakest assumptions
MSC: 35M05
MSC: 49J20
MSC: 65K10
MSC: 65M20
MSC: 65M60
MSC: 65N30
MSC: 73U05
MSC: 74F05
MSC: 74G30
MSC: 74H25
MSC: 74S30
idZBL: Zbl 0627.73002
idMR: MR0837733
DOI: 10.21136/AM.1986.104199
.
Date available: 2008-05-20T18:29:58Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104199
.
Reference: [1] A. Bermúdez J. M. Viaño: Étude de deux schémas numériques pour les équations de la thermoélasticité.R.A.I.R.O. Numer. Anal. 17 (1983), 121-136. MR 0705448
Reference: [2] B. A. Boley J. H. Weiner: Theory of Thermal Stresses.John Wiley and Sons, New York-London-Sydney, 1960. MR 0112414
Reference: [3] S.-I. Chou C.-C. Wang: Estimates of error in finite element approximate solutions to problems in linear thermoelasticity, Part 1, Computationally coupled numerical schemes.Arch. Rational Mech. Anal. 76 (1981), 263-299. MR 0636964
Reference: [4] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [5] G. Duvaut J. L. Lions: Inéquations en thermoélasticité et magnétohydrodynamique.Arch. Rational Mech. Anal. 46 (1972), 241-279. MR 0346289, 10.1007/BF00250512
Reference: [6] J. Kačur: Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities.Czech. Math. J. 34 (109) (1984), 92-105. Zbl 0554.35086, MR 0731982
Reference: [7] J. Kačur: On an approximate solution of variational inequalities.Math. Nachr. 123 (1985), 205-224. MR 0809346, 10.1002/mana.19851230119
Reference: [8] J. Kačur A. Wawruch: On an approximate solution for quasilinear parabolic equations.Czech. Math. J. 27 (102) (1977), 220-241. MR 0605665
Reference: [9] A. Kufner O. John S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [10] J. L. Lions E. Magenes: Problèmes aux limites non homogènes et applications.Vol. 2. Dunod, Paris, 1968. MR 0247244
Reference: [11] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584
Reference: [12] M. Zlámal: Curved elements in the finite element method. I.SIAM J. Numer. Anal. 10 (1973), 229-240. MR 0395263, 10.1137/0710022
Reference: [13] A. Ženíšek: Curved triangular finite $C^m$-elements.Apl. Mat. 23 (1978), 346-377. MR 0502072
Reference: [14] A. Ženíšek: Finite element methods for coupled thermoelasticity and coupled consolidation of clay.R.A.I.R.O. Numer. Anal. 18 (1984), 183-205. MR 0743885
Reference: [15] A. Ženíšek: The existence and uniqueness theorem in Biot's consolidation theory.Apl. Mat. 29 (1984), 194-211. Zbl 0557.35005, MR 0747212
Reference: [16] A. Ženíšek: Approximations of parabolic variational inequalities.Apl. Mat. 30 (1985), 11-35. MR 0779330
Reference: [17] A. Ženíšek M. Zlámal: Convergence of a finite element procedure for solving boundary value problems of the fourth order.Int. J. Num. Meth. Engng. 2 (1970), 307-310. MR 0284016, 10.1002/nme.1620020302
.

Files

Files Size Format View
AplMat_31-1986-3_3.pdf 4.715Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo