Previous |  Up |  Next

Article

Title: Variational inequalities in plasticity with strain-hardening - equilibrium finite element approach (English)
Author: Kestřánek, Zdeněk
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 31
Issue: 4
Year: 1986
Pages: 270-281
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The incremental finite element method is applied to find the numerical solution of the plasticity problem with strain-hardening. Following Watwood and Hartz, the stress field is approximated by equilibrium triangular elements with linear functions. The field of the strain-hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization problem with constraints is solved by the Lagrange multipliers method with additional variables. A comparison of the results obtained with an experiment is given. (English)
Keyword: incremental finite element method
Keyword: strain-hardening
Keyword: equilibrium triangular elements
Keyword: nonlinear optimization problem with constraints
Keyword: Lagrange multipliers method
Keyword: additional variables
MSC: 49J40
MSC: 49M29
MSC: 73-08
MSC: 73E99
MSC: 74C99
MSC: 74S30
idZBL: Zbl 0608.73040
idMR: MR0854321
DOI: 10.21136/AM.1986.104206
.
Date available: 2008-05-20T18:30:17Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104206
.
Reference: [1] C. Johnson: On Plasticity with Hardening.J. Math. Anal. Appl., Vol. 62, 1978, pp. 325-336. Zbl 0373.73049, MR 0489198, 10.1016/0022-247X(78)90129-4
Reference: [2] I. Hlaváček J. Nečas: Mathematical Theory of Elastic and Elasto-Plastic Bodies.Elsevier, Amsterdam, 1981.
Reference: [3] I. Hlaváček: A Finite Element Solution for Plasticity with Strain-Hardening.R.A.I.R.O. Numerical Analysis, V. 14, No. 4, 1980, pp. 347-368. MR 0596540
Reference: [4] Nguyen Quoc Son: Matériaux élastoplastiques écrouissable.Arch. Mech. Stos., V. 25, 1973, pp. 695-702. MR 0366164
Reference: [5] B. Halphen, Nguyen Quoc Son: Sur les matériaux standard généralisés.J. Mécan., V. 14, 1975, pp. 39-63. MR 0416177
Reference: [6] C. Johnson: A Mixed Finite Element Method for Plasticity Problems with Hardening.S.I.A.M. J. Numer. Anal., V. 14, 1977, pp. 575-583. Zbl 0374.73039, MR 0489265, 10.1137/0714037
Reference: [7] Z. Kestřánek: A Finite Element Solution of Variational Inequality of Plasticity with Strain-Hardening.Thesis, Czechoslovak Academy of Sciences, 1982 (in Czech).
Reference: [8] V. B. Watwood B. J. Hartz: An Equilibrium Stress Field Model for Finite Element Solution of Two-Dimensional Elastostatic Problems.Inter. J. Solids Structures, V. 4, 1968, pp. 857-873.
Reference: [9] M. Avriel: Nonlinear Programming. Analysis and Methods.Prentice-Hall, New York, 1976. Zbl 0361.90035, MR 0489892
Reference: [10] P. S. Theocaris E. Marketos: Elastic-Plastic Analysis of Perforated Thin Strips of a Strain-Hardening Material.J. Mech. Phys. Solids, 1964, V. 12, pp. 377-390. 10.1016/0022-5096(64)90033-X
Reference: [11] C. Johnson: On Finite Element Methods for Plasticity Problems.Numer. Math., V. 26, 1976, pp. 79-84. Zbl 0355.73035, MR 0436626, 10.1007/BF01396567
Reference: [12] M. Křížek: An Equilibrium Finite Element Method in Three-Dimensional Elasticity.Apl. Mat., V. 27, No. 1, 1982. MR 0640139
Reference: [13] D. M. Himmelblau: Applied Nonlinear Programming.McGraw-Hill, New York, 1972. Zbl 0241.90051
Reference: [14] M. S. Bazaraa C. M. Shetty: Nonlinear Programming. Theory and Algorithms.John Wiley and Sons, New York, 1979. MR 0533477
Reference: [15] P. E. Gill W. Murrey: Numerical Methods for Constrained Optimization.Academic Press, London, 1974. MR 0395227
Reference: [16] B. M. Irons: A Frontal Solution Program for Finite Element Analysis.Intern. J. for Numer. Meth. in Eng., V. 2, 1970. Zbl 0252.73050
Reference: [17] K. Schittkowski: The Nonlinear Programming Method cf Wilson, Han and Powell with an Augmented Lagrangian Type Line Search Function.Part 1, 2. Numer. Math,, V. 38, No. 1, 1981.
Reference: [18] A. Samuelsson M. Froier: Finite Elements in Plasticity. A Variational Inequality Approach.Proc. MAFELAP 1978, Academic Press, London, 1979. MR 0559293
Reference: [19] J. Céa: Optimisation, théorie et algorithmes.Dunod, Paris, 1971. MR 0298892
Reference: [20] O. L. Mangasarian: Nonlinear Programming 3, 4.Academic Press, New York, 1978, 1981. MR 0503824
Reference: [21] Z. Kestřánek: Variational Inequalities in Plasticity - Dual Finite Element Approach.Proc. MAFELAP 1984, Academic Press, London, 1984.
.

Files

Files Size Format View
AplMat_31-1986-4_2.pdf 1.383Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo