Previous |  Up |  Next

Article

Title: On numerical evaluation of integrals involving Bessel functions (English)
Author: Bezvoda, Václav
Author: Farzan, Ruszlán
Author: Segeth, Karel
Author: Takó, Galina
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 31
Issue: 5
Year: 1986
Pages: 396-410
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The paper is concerned with the efficient evaluation of the integral $\int^\infty_0 f(x)J_n(rx)dx$, where $J_n$ is the Bessel function of index $n$ and $n$ is a nonnegative integer, for a given sequence of values of a real parameter $r$. Two procedures are proposed and compared. One of them consists in a direct generalization of a procedure for the evaluation of of a similar integral with the weight function exp $(irx), which employs the fast Fourier transform. The other approach is based on the construction of a special Gaussian quadrature formula where $J_n$ appears as a weight. The results of the comparison show that the application of the Gaussian formula is much more efficient. (English)
Keyword: integrals with Bessel functions
Keyword: fast Fourier transform
Keyword: Gaussian integration formula
Keyword: five-point Gauss rule
Keyword: error analysis
Keyword: numerical quadrature
MSC: 33C10
MSC: 42A16
MSC: 65D20
MSC: 65D30
MSC: 65D32
MSC: 65T40
idZBL: Zbl 0614.65012
idMR: MR0863034
DOI: 10.21136/AM.1986.104216
.
Date available: 2008-05-20T18:30:47Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104216
.
Reference: [1] M. Ambrožová: Using fast Fourier transform for evaluation of the integral of an oscillating function on the infinite integral.(Czech.) RNDr. thesis. Matematicko-fyzikální fakulta Univerzity Karlovy, Praha 1979.
Reference: [2] N. S. Bahvalov: Numerical Methods.(Russian.) Nauka, Moskva 1973. MR 0362811
Reference: [3] I. S. Berezin I. P. Židkov: Methods of Computation.(Russian.) Vol. 1. Nauka, Moskva 1966.
Reference: [4] V. Bezvoda K. Segeth: A contribution to the theory of electromagnetic induction of a line source.Studia Geod. et Geoph. 20 (1976), 366-377. 10.1007/BF01617648
Reference: [5] V. Bezvoda K. Segeth: Mathematical Modeling in Electromagnetic Prospecting Methods.Univerzita Karlova, Praha 1982.
Reference: [6] P. I. Davis P. Rabinowitz: Methods of Numerical Integration.Academic Press, New York 1975. MR 0448814
Reference: [7] R. H. Farzan: Propagation of electromagnetic waves in stratified media with local inhomogeneity.Mathematical Models in Physics and Chemistry and Numerical Methods of Their Realization. Teubner Texte zur Mathematik 61. Teubner, Leipzig 1984, 237-247.
Reference: [8] L. N. G. Filon: On a quadrature formula for trigonometric integrals.Proc. Roy. Soc. Edinburgh 49 (1928), 38-47.
Reference: [9] I. S. Gradštein I. M. Ryžik: Tables of Integrals, Sums, Series, and Products.(Russian.) 5th ed. Nauka, Moskva 1971.
Reference: [10] S.-Å. Gustafson G. Dahlqaist: On the computation of slowly convergent Fourier integrals.Methoden und Verfahren der mathematischen Physik. Band 6. Bibliographisches Institut, Mannheim 1972, 93-112. MR 0359377
Reference: [11] T. Kaneko B. Liu: Accumulation of round-off error in fast Fourier transforms.J. Assoc. Comput. Mach. 17 (1970), 637-654. MR 0275710, 10.1145/321607.321613
Reference: [12] V. I. Krylov: Approximate Computation of Integrals.(Russian.) Nauka, Moskva 1967. MR 0218015
Reference: [13] I. M. Longman: Note on a method for computing infinite integrals of oscillatory functions.Proc. Camb. Phil. Soc. 52 (1956), 764-768. Zbl 0072.33803, MR 0082193, 10.1017/S030500410003187X
Reference: [14] R. Piessens E. de Doncker-Kapenga C. W. Überhuber D. K. Kahaner: QUADPACK. A Subroutine Package for Automatic Integration.Springer Series in Computational Mathematics 1. Springer-Verlag, Berlin 1983. MR 0712135
Reference: [15] A. Ralston: A First Course in Numerical Analysis.McGraw-Hill, New York 1965. Zbl 0139.31603, MR 0191070
Reference: [16] K. Segeth: Roundoff errors in the fast computation of discrete convolutions.Apl. Mat. 26 (1981), 241-262. Zbl 0474.65025, MR 0623505
Reference: [17] H. J. Stetter: Numerical approximation of Fourier transforms.Numer. Math. 8 (1966), 235-249. Zbl 0163.39503, MR 0198716, 10.1007/BF02162560
.

Files

Files Size Format View
AplMat_31-1986-5_4.pdf 2.068Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo