Previous |  Up |  Next

Article

Title: Stability analysis of reducible quadrature methods for Volterra integro-differential equations (English)
Author: Bakke, Vernon L.
Author: Jackiewicz, Zdzisław
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 1
Year: 1987
Pages: 37-48
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Stability analysis for numerical solutions of Voltera integro-differential equations based on linear multistep methods combined with reducible quadrature rules is presented. The results given are based on the test equation $y'(t)=\gamma y(t) + \int^t_0(\lambda + \mu t + vs) y(s) ds$ and absolute stability is deffined in terms of the real parameters $\gamma, \lambda, \mu$ and $v$. Sufficient conditions are illustrated for $(0;0)$ - methods and for combinations of Adams-Moulton and backward differentiation methods. (English)
Keyword: backward-differentiation-formula method
Keyword: Volterra integro-differential equations
Keyword: theta method
Keyword: test equation
Keyword: stability
Keyword: linear multistep methods
Keyword: reducible quadrature formulas
Keyword: linear difference equation
Keyword: Adams-Moulton methods
Keyword: stability of numerical solution
MSC: 45J05
MSC: 45M10
MSC: 65Q05
MSC: 65R20
idZBL: Zbl 0624.65140
idMR: MR0879328
DOI: 10.21136/AM.1987.104234
.
Date available: 2008-05-20T18:31:33Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104234
.
Reference: [1] С. T. H. Baker A. Makroglou E. Short: Regions of stability in the numerical treatment of Volterra integro-differential equations.SIAM J. Numer. Anal., Vol. 16, No. 6, December, 1979. MR 0551314
Reference: [2] V. L. Bakke Z. Jackiewicz: Stability of reducible quadrature methods for Volterra integral equations of the second kind.Numer. Math. 47 (1985), 159-173. MR 0799682, 10.1007/BF01389707
Reference: [3] V. L. Bakke Z. Jackiewicz: Boundedness of solutions of difference equations and application to numerical solutions of Volterra integral equations of the second kind.J. Math. Anal. Appl., 115 (1986), 592-605. MR 0836249, 10.1016/0022-247X(86)90018-1
Reference: [4] H. Brunner: A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations.J. Comput. App. Math., Vol. 8, No. 3, 1982. Zbl 0485.65087, MR 0682889
Reference: [5] H. Brunner J. D. Lambert: Stability of numerical methods for Volterra integro-differential equations.Computing 12, 75-89 (1974). MR 0418490, 10.1007/BF02239501
Reference: [6] C. J. Gladwin R. Jeltsch: Stability of quadrature rule methods for first kind Volterra integral equations.BIT 14, 144-151 (1974). MR 0502108, 10.1007/BF01932943
Reference: [7] P. Linz: Linear multistep methods for Volterra integro-differential equations.J. Assoc. Comput. Mach., 16 (1969), 295-301. Zbl 0183.45002, MR 0239786, 10.1145/321510.321521
Reference: [8] J. Matthys: A-stable linear multistep methods for Volterra integro-differential equations.Numer. Math. 27, 85-94 (1976). Zbl 0319.65072, MR 0436638, 10.1007/BF01399087
Reference: [9] D. Sanchez: A short note on asymptotic estimates of stability regions for a certain class of Volterra integro-differential equations.Manuscript, Department of Mathematics and Statistics, University of New Mexico, May, 1984.
Reference: [10] L. M. Milne-Thompson: The calculus of finite differences.MacMillan& Co., London, 1933.
Reference: [H] P. H. M. Wolkenfelt: The construction of reducible quadrature rules for Volterra integral and integro-differential equations.IMA Journal of Numerical Analysis, 2, 131-152 (1982). Zbl 0481.65084, MR 0668589, 10.1093/imanum/2.2.131
Reference: [12] P. H. M. Wolkenfelt: On the numerical stability of reducible quadrature methods for second kind Volterra integral equations.Z. Angew. Math. Mech., 61, 399-401 (1981). Zbl 0466.65073, MR 0638029, 10.1002/zamm.19810610808
.

Files

Files Size Format View
AplMat_32-1987-1_5.pdf 1.432Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo