Previous |  Up |  Next

Article

Title: On the rate of approximation in the random sum CLT for dependent variables (English)
Author: Basu, Adhir Kumar
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 3
Year: 1987
Pages: 169-176
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Capital $"O"$ and lower-case $"o"$ approximations of the expected value of a class of smooth functions $(f\in C^r(R))$ of the normalized random partial sums of dependent random variables by the expectation of the corresponding functions of Gaussian random variables are established. The same types of approximation are also obtained for dependent random vectors. This generalizes and improves previous results of the author (1980) and Rychlik and Szynal (1979). (English)
Keyword: random sums
Keyword: central limit theorem
Keyword: approximation theorems
Keyword: random vectors
MSC: 41A25
MSC: 60F05
MSC: 60G42
idZBL: Zbl 0631.60024
idMR: MR0895875
DOI: 10.21136/AM.1987.104248
.
Date available: 2008-05-20T18:32:09Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104248
.
Reference: [1] A. K. Basu: On the rate of approximation in the Central limit theorem for dependent random variables and random vectors.J. Multivariate Anal. 10, (1980), 565-578. Zbl 0452.60027, MR 0599690, 10.1016/0047-259X(80)90070-6
Reference: [2] P. L. Butzer L. Hahn W. Westphal: On the rate of approximation in the Central limit theorem.J. Approx. Theory 13 (1975), 327-340. MR 0394809, 10.1016/0021-9045(75)90042-8
Reference: [3] M. Mamatov I. Nematov: On a limit theorem for sums of a random number of independent random variables.(Russian). Izv. Akad. Nauk, USSR Ser. Fiz. Mat. Nauk, 3 (1971), 18-24. MR 0295419
Reference: [4] H. Robbins: The asymptotic distribution of the Sum of a random number of random variables.Bull. Amer. Math. Soc. 54 (1948), 1151-1161. Zbl 0034.22503, MR 0027974, 10.1090/S0002-9904-1948-09142-X
Reference: [5] Z. Rychlík D. Szynal: On the limit behavior of Sum of a random number of independent random variables.Coll. Math. 28 (1973), 147-159. MR 0334311, 10.4064/cm-28-1-147-159
Reference: [6] Z. Rychlík D. Szynal: On the rate of approximation in the random C-L.T.Theory of probability and Appl. 24 (1979), 620-625. MR 0541376
Reference: [7] E. Rychlík Z. Rychlík: The generalized Anscombe Condition and its applications in random sum limit theorems.Lecture Notes in Math. Probability in Banach spaces I Springer-Verlag 828 (1980), 244-250.
Reference: [8] V. Sakalauskas: An estimate in the Multidimensional Central Limit Theorem.Lithuanian Math. Jour. (Eng. Trans.) 17, 4 (1977), 567-572. MR 0464370, 10.1007/BF00972282
Reference: [9] S. Kh. Sirazhdinov G. Orazov: Generalization of a theorem of Robbins.(Russian), In Limit theorems and Statistical Inferences, Tashkent 1960, 154-162.
.

Files

Files Size Format View
AplMat_32-1987-3_1.pdf 1.152Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo