Previous |  Up |  Next

Article

Title: Differential stability of solutions to air quality control problems in urban area (English)
Author: Holnicki, Piotr
Author: Sokołowski, Jan
Author: Żochowski, Antoni
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 3
Year: 1987
Pages: 240-253
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The convex optimal control problem for a system described by the parabolic equation is considered. The form of the right derivative of an optimal solution with respect to the parameter is derived. The applications to an air quality control problem are discussed. Numerical result are provided. (English)
Keyword: convex optimal control
Keyword: parabolic equation
Keyword: air quality control
Keyword: differential stability
MSC: 35K20
MSC: 49A50
MSC: 49J45
MSC: 49K20
MSC: 86A35
MSC: 92D40
MSC: 93B35
MSC: 93C20
MSC: 93C75
MSC: 93D99
idZBL: Zbl 0631.49013
idMR: MR0895881
DOI: 10.21136/AM.1987.104254
.
Date available: 2008-05-20T18:32:27Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104254
.
Reference: [1] : Mathematical Models for Planning and Controlling Air Quality.G. Fronza, P. Melli (eds.), Proceedings of IIASA Workshop, Pergamon Press, 1982.
Reference: [2] P. Holnicki, al.: An urban-scale computer model for short-term prediction of air pollution.Arch. Autom. i Telemech, 1 - 2 (1986), 51 - 71. Zbl 0608.90012
Reference: [3] P. Holnicki A. Žochowski: Numerical methods in forecasting and controlling air pollution problems.Systems Research Institute, Report No. ZTS-15-7/84, Warsaw, 1984 (in Polish).
Reference: [4] J. L. Lions: Controle optimal de systemes gouvernes par des equations aux derivees partielles.Dunod, Paris, 1968. Zbl 0179.41801, MR 0244606
Reference: [5] K. Malanowski J. Sokolowski: Sensitivity of solutions to convex control constrained optimal control problems for distributed parameter systems.Journal of Mathematical Analysis and Applications (to appear). MR 0861917
Reference: [6] G. I. Martchuk: Mathematical Modelling in Enviromental Problems.Nauka, Moscow 1982 (in Russian).
Reference: [7] B. N. Pshenitchny: Linearization Method.Nauka, Moscow 1983 (in Russian).
Reference: [8] J. Sokolowski: Sensitivity analysis of control constrained optimal control problems for distributed parameter systems.(submitted). Zbl 0647.49019
Reference: [9] J. Sokolowski: Differential stability of solutions to constrained optimization problems.Applied Mathematics and Optimization, 13 (1985), 97-115. Zbl 0572.49012, MR 0794173, 10.1007/BF01442201
Reference: [10] J. Sokolowski: Differential stability of control constrained optimal control problems for distributed parameter systems.Proceedings of 2nd International Conference on Control Theory for Distributed Parameter Systems and Applications, Springer Verlag, 331 - 339. Zbl 0578.49021, MR 0897570
Reference: [11] J. Sokolowski: Sensitivity Analysis and Parametric Optimization of Optimal Control Problems for Distributed Parameter Systems.Zeszyty Naukowe Politechniki Warszawskiej, seria Elektronika (to appear).
Reference: [12] J. Sokolowski: Differential stability of solutions to boundary optimal control problems for parabolic systems.(to appear). Zbl 0608.49017
Reference: [13] P. Holnicki J. Sokolowski A. Žochowski: Sensitivity analysis of an optimal control problem arising from air quality control in urban area.Proceedings of 11th IFIP Conference on Systems Modelling and Optimization, Budapest, 1985, Springer Verlag, 331 - 339. MR 0903493
.

Files

Files Size Format View
AplMat_32-1987-3_7.pdf 1.527Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo