Previous |  Up |  Next

Article

Title: On the optimal control problem governed by the equations of von Kármán. III. The case of an arbitrary large perpendicular load (English)
Author: Bock, Igor
Author: Hlaváček, Ivan
Author: Lovíšek, Ján
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 4
Year: 1987
Pages: 315-331
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: We shall deal with an optimal control problem for the deffection of a thin elastic plate. We consider the perpendicular load on the plate as the control variable. In contrast to the papers [1], [2], arbitrarily large loads are edmitted. As the unicity of a solution of the state equation is not guaranteed, we consider the cost functional defined on the set of admissible controls and states, and the state equation plays the role of the constraint. The existence of an optimal couple (i.e., control and state) is verified. By using Lagrange multipliers, some necessary optimality conditions are derived. A control problem with the cost functional involving all possible solutions of the state equation for arbitrary perpendicular load-control is investigated in the last part. The optimal control problem is solved via a sequence of penalized optimal control problems. (English)
Keyword: Lagrange multipliers
Keyword: optimal control problem
Keyword: system of von Kármán equations
Keyword: deflection
Keyword: thin elastic plate
Keyword: perpendicular load
Keyword: arbitrary large loads
Keyword: existence proof
Keyword: conditions of optimality
MSC: 49A22
MSC: 49B22
MSC: 49J20
MSC: 49K20
MSC: 73H05
MSC: 73K10
MSC: 74G60
MSC: 74K20
MSC: 74P99
idZBL: Zbl 0639.73028
idMR: MR0897835
DOI: 10.21136/AM.1987.104262
.
Date available: 2008-05-20T18:32:49Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104262
.
Reference: [1] I. Bock I. Hlaváček J. Lovíšek: On the optimal control problem governed by the equations of von Kárman, I. The homogeneous Dirichlet boundary conditions.Aplikace mat. 29 (1984), 303-314. MR 0754082
Reference: [2] I. Bock I. Hlaváček J. Lovíšek: On the optimal control problem governed by the equations of von Kárman. II. Mixed boundary conditions.Aplikace mat. 30 (1985), 375-392. MR 0806834
Reference: [3] I. Hlaváček J. Neumann: In homogeneous boundary value problems for the von Kárman equations. I.Aplikace mat. 19 (1974), 253-269. MR 0377307
Reference: [4] A. D. Joffe V. M. Tichomirov: The theory of extremal problems.(in Russian). Moskva, Nauka 1974. MR 0410502
Reference: [5] O. John J. Nečas: On the solvability of von Kárman equations.Aplikace mat. 20 (1975), 48-62. MR 0380099
Reference: [6] L. A. Ljusternik V. I. Sobolev: The elements of functional analysis.(in Russian). Moskva, Nauka 1965. MR 0209802
Reference: [7] M. M. Vajnberg: Variational methods of investigating nonlinear operators.(in Russian). Moskva, Gostechizdat 1956.
Reference: [8] M. M. Vajnberg: Variational method and a method of monotone operators.(in Russian). Moskva, Nauka 1972.
.

Files

Files Size Format View
AplMat_32-1987-4_6.pdf 1.661Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo