Previous |  Up |  Next

Article

Title: On solutions of a perturbed fast diffusion equation (English)
Author: Filo, Ján
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 5
Year: 1987
Pages: 364-380
Summary lang: English
Summary lang: Russian
Summary lang: Slovak
.
Category: math
.
Summary: The paper concerns the (local and global) existence, nonexistence, uniqueness and some properties of nonnegative solutions of a nonlinear density dependent diffusion equation with homogeneous Dirichlet boundary conditions. (English)
Keyword: homogeneous Dirichlet boundary conditions
Keyword: initial distribution
Keyword: existence
Keyword: global solution
Keyword: global Lipschitz continuity
Keyword: smooth initial data
Keyword: blow-up
Keyword: local existence
Keyword: finite extinction
Keyword: nonlinear diffusion
Keyword: method of lines
MSC: 35B40
MSC: 35K20
MSC: 35K55
MSC: 35K60
MSC: 35K65
idZBL: Zbl 0652.35064
idMR: MR0909544
DOI: 10.21136/AM.1987.104268
.
Date available: 2008-05-20T18:33:04Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104268
.
Reference: [1] D. G. Aronson M. G. Crandall L. A. Peletier: Stabilization of solutions of a degenerate nonlinear diffusion problem.Nonlinear Analysis, 6 (1982), 1001-1022. MR 0678053, 10.1016/0362-546X(82)90072-4
Reference: [2] P. Benilan M. K. Crandall: The continuous dependence on $\varphi$ of solutions of $u_t - \Delta \varphi (u) = = 0$.Indiana Univ. Math. J., Vol. 30, 2 (1981), 161-177. MR 0604277, 10.1512/iumj.1981.30.30014
Reference: [3] J. G. Berryman C. J. Holland: Stability of the separable solution for fast diffusion.Arch. Ratl. Mech. Anal., 74 (1980), 379-388. MR 0588035, 10.1007/BF00249681
Reference: [4] J. Filo: A nonlinear diffusion equation with nonlinear boundary conditions: method of lines.(to appear). Zbl 0664.35049, MR 0977906
Reference: [5] A. Friedman: Partial differential equations.Holt, Rinehart and Winston, New York, 1969. Zbl 0224.35002, MR 0445088
Reference: [6] S. Fučík A. Kufner: Nonlinear differential equations.SNTL, Praha 1978 (Czech).
Reference: [7] J. W. Jerome: Horizontal line analysis of the multidimensional porous medium equation: existence, rate of convergence and maximum principles.Lecture Notes in Math. 506, Springer 1976. MR 0468239
Reference: [8] J. Kačur: Method of Rothe in Evolution Equations.Teubner-Texte zur Mathematik, 80, Leipzig, 1985. MR 0834176
Reference: [9] A. Kufner S. Fučík O. John: Function Spaces.Academia, Praha 1977. MR 0482102
Reference: [10] O. A. Ladyženskaja V. A. Solonikov N. N. Uraľceva: Linear and quasilinear equations of parabolic type.Nauka, Moscow 1967 (Russian).
Reference: [11] M. Nakao: Existence, nonexistence and some asymptotic behaviour of global solutions of a nonlinear degenerate parabolic equation.Math. Rep. College of Gen. Edc., Kyushu Univ. 14(1983), 1-21. Zbl 0563.35038, MR 0737351
Reference: [12] M. H. Protter H. F. Weinberger: Maximum principles.Prentice-Hall, 1967. MR 0219861
Reference: [13] E. S. Sabinina: On a class of quasilinear parabolic equations not solvable for the time derivative.Sibirsk. Mat. Z., 6 (1965), 1074-1100 (Russian). MR 0190552
Reference: [14] M. E. Gurtin R. C. MacCamy: On the diffusion of biological populations.Math. Biosciences, 33 (1977), 35-49. MR 0682594, 10.1016/0025-5564(77)90062-1
.

Files

Files Size Format View
AplMat_32-1987-5_4.pdf 2.405Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo