Previous |  Up |  Next

Article

Title: Optimal control of variational inequality with applications to axisymmetric shells (English)
Author: Lovíšek, Ján
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 6
Year: 1987
Pages: 459-479
Summary lang: English
Summary lang: Russian
Summary lang: Slovak
.
Category: math
.
Summary: The optimal control problem of variational inequality with applications to axisymmetric shells is discussed. First an existence result for the solution of the optimal control problem is given. Next is presented the formulation of first order necessary conditionas of optimality for the control problem governed by a variational inequality with its coefficients as control variables. (English)
Keyword: second invariant of the stress deviator
Keyword: smooth regularized control problems
Keyword: optimal shape design
Keyword: axisymmetric shells
Keyword: elliptic, linear symmetric operator
Keyword: first order necessary conditions of optimality
Keyword: nonsmooth
Keyword: nonconvex infinite dimensional opimization problem
MSC: 49A27
MSC: 49A29
MSC: 58E25
MSC: 58E35
MSC: 58E99
MSC: 74K15
MSC: 74P99
idZBL: Zbl 0647.73042
idMR: MR0916062
DOI: 10.21136/AM.1987.104277
.
Date available: 2008-05-20T18:33:30Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104277
.
Reference: [1] R. A. Adams: Sobolev spaces.Academic Press, New York, San Francisco, London 1975. Zbl 0314.46030, MR 0450957
Reference: [2] H. Attouch: Convergence des solutions d'inequations variationnelles avec obstacle.Proceedings of the international meeting on recent methods in nonlinear analysis. Rome, may 1978, ed. by E. De Giorgi - E. Magenes - U. Mosco.
Reference: [3] V. Barbu: Optimal control of variational inequalities.Pitman Advanced Publishing Program, Boston, London, Melbourne 1984. Zbl 0574.49005, MR 0742624
Reference: [4] I. Boccardo A. Dolcetta: Stabilita delle soluzioni di disequazioni variazionali ellitiche e paraboliche quasi - lineari.Ann. Universeta Ferrara, 24 (1978), 99-111.
Reference: [5] J. M. Boisserie, Glowinski: Optimization of the thickness law for thin axisymmetric shells.Computers 8. Structures, 8 (1978), 331-343. Zbl 0379.73090
Reference: [6] I. Hlaváček: Optimalization of the shape of axisymmetric shells.Aplikace matematiky 28, с. 4, pp. 269-294. MR 0710176
Reference: [7] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [8] F. Mignot: Controle dans les inéquations variationelles elliptiques.Journal Functional Analysis. 22 (1976), 130-185. Zbl 0364.49003, MR 0423155, 10.1016/0022-1236(76)90017-3
Reference: [9] J. Nečas: Les méthodes directes en theorie des équations elliptiques.Academia, Praha, 1967. MR 0227584
Reference: [10] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies. An introduction.Amsterdam, Elsevier, 1981. MR 0600655
Reference: [11] P. D. Panagiotopoulos: Inequality problems in mechanics and applications.Birkhäuser, Boston-Basel-Stuttgart, 1985. Zbl 0579.73014, MR 0896909
Reference: [12] J. P. Yvon: Controle optimal de systémes gouvernes par des inéquations variationnelles.Rapport Laboria, February 1974.
Reference: [13] O. C. Zienkiewcz: The Finite Element Method in Engineering.Science, McGraw Hill, London, 1984.
.

Files

Files Size Format View
AplMat_32-1987-6_5.pdf 2.358Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo