Full entry |
PDF
(1.6 MB)
Feedback

nonlinear function; adjustment of parameters by $L_1$ norm; photon correlation spectroscopy; analysis of experimental data

References:

[1] K. Zimmermann M. Delaye P. Licinio: **Analysis of multiexponential decay by a linear programming method: Application to light scattering spectroscopy**. J. Chem. Phys. 82 (1985) 2228. DOI 10.1063/1.448316

[2] G. B. Dantzig: **Linear Programming and Extensions**. Princeton University Press, Princeton, New Jersey 1963. MR 0201189 | Zbl 0108.33103

[3] K. Zimmermann J. Jakeš: Unpublished results.

[4] J. Jakeš P. Štěpánek: To be published.

[5] A. J. Pope: **Two approaches to nonlinear least squares adjustments**. Can. Surveyor 28 (1974) 663. DOI 10.1139/tcs-1974-0111

[6] M. J. Box: **A comparison of several current optimization methods, and the use of transformations in constrained problems**. Computer J. 9 (1966) 67. DOI 10.1093/comjnl/9.1.67 | MR 0192645 | Zbl 0146.13304

[7] B. A. Murtagh R. W. H. Sargent: **Computational experience with quadratically convergent minimisation methods**. Computer J. 13 (1970) 185. DOI 10.1093/comjnl/13.2.185 | MR 0266403

[8] K. Levenberg: **A method for the solution of certain non-linear problems in least squares**. Quart. Appl. Mathematics 2 (1944) 164. DOI 10.1090/qam/10666 | MR 0010666 | Zbl 0063.03501

[9] D. W. Marquardt: **An algorithm for least-squares estimation of nonlinear parameters**. J. Soc. Indust. Appl. Math. 11 (1963) 431. DOI 10.1137/0111030 | MR 0153071 | Zbl 0112.10505

[10] P. Bloomfield W. L. Steiger: **Least Absolute Deviations. Theory, Applications, and Algorithms**. Birkhäuser, Boston-Basel-Stuttgart 1983. MR 0748483

[11] T. S. Arthanari Y. Dodge: **Mathematical Programming in Statistics**. Wiley, New York 1981. MR 0607328