Previous |  Up |  Next

Article

Title: A note on direct methods for approximations of sparse Hessian matrices (English)
Author: Tůma, Miroslav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 3
Year: 1988
Pages: 171-176
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Necessity of computing large sparse Hessian matrices gave birth to many methods for their effective approximation by differences of gradients. We adopt the so-called direct methods for this problem that we faced when developing programs for nonlinear optimization. A new approach used in the frame of symmetric sequential coloring is described. Numerical results illustrate the differences between this method and the popular Powell-Toint method. (English)
Keyword: large sparse optimization
Keyword: numerical examples
Keyword: sparse Hessian matrices
Keyword: finite-differences
Keyword: graph-coloring
Keyword: ordering scheme
Keyword: coloring scheme
MSC: 65D15
MSC: 65D25
MSC: 65F20
MSC: 65H10
MSC: 65K05
MSC: 90C30
idZBL: Zbl 0658.65058
idMR: MR0944781
DOI: 10.21136/AM.1988.104300
.
Date available: 2008-05-20T18:34:30Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104300
.
Reference: [1] T. F. Coleman J. J. Moré: Estimation of Sparse Hessian Matrices and Graph Coloring Problems.Math. Prog. 28 (1984), 243-270. MR 0736293, 10.1007/BF02612334
Reference: [2] G. C. Everstine: A Comparison of Three Resequencing Algorithms for the Reduction of Matrix Profile and Wavefront.International Journal on Numerical Methods in Engineering 14 (1979), 837-853. Zbl 0401.73082, 10.1002/nme.1620140606
Reference: [3] A. George J. W. H. Liu: Computer Solution of Large Sparse Positive Definite Systems.Prentice-Hall, Inc. Englewood Cliffs. N. J. 07632, 1981. MR 0646786
Reference: [4] P. Hanzálek J. Hřebíček J. Kučera: A Conversational Program System for Mathematical Optimization.Computer Physics Communications 41 (1986), 403 - 408. 10.1016/0010-4655(86)90080-9
Reference: [5] D. M. Matula L. L. Beck: Smallest-last Ordering and Clustering and Graph Coloring Algorithms.JACM 30 (1983), 417-427. MR 0709826, 10.1145/2402.322385
Reference: [6] S. T. McCormick: Optimal Approximation of Sparse Hessians and its Equivalence to a Graph Coloring Problem.Math. Prog. 26 (1983), 153-171. Zbl 0507.65027, MR 0700644, 10.1007/BF02592052
Reference: [7] M. J. D. Powell, Ph. L. Toint: On the Estimation of Sparse Hessian Matrices.SIAM on Num. Anal. 16 (1979), 1060-1074. Zbl 0426.65025, MR 0551326, 10.1137/0716078
Reference: [8] M. N. Thapa: Optimization of Unconstrained Functions with Sparse Hessian Matrices: Newton-type Methods.Math. Prog. 19 (1984), 156-186. Zbl 0538.49023, MR 0745406
Reference: [9] O. C. Zienkiewicz: The Finite Element Method.McGraw Hill, London, 1977. Zbl 0435.73072
.

Files

Files Size Format View
AplMat_33-1988-3_2.pdf 899.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo