Previous |  Up |  Next

Article

Title: A monotonicity method for solving hyperbolic problems with hysteresis (English)
Author: Krejčí, Pavel
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 3
Year: 1988
Pages: 197-203
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: A version of the Minty-Browder method is used for proving the existence and uniqueness of a weak $\omega$-periodic solution to the equation $u_{tt}\rightarrow \text {div} F(\text {grad } u)= g$ in a bounded domain $\Omega \subset \bold R^N$ with the boundary condition $u=0$ on $\delta \Omega$, where $g$ is a given (generalized) $\omega$-periodic function and $F$ is the Ishlinskii hysteresis operator. ()
Keyword: quasilinear
Keyword: method of Minty-Browder type
Keyword: existence
Keyword: uniqueness
Keyword: weak $\omega$-periodic solution
Keyword: vibrating processes
Keyword: elasto-plastic solids
Keyword: ferromagnetics
Keyword: Ishlinskii hysteresis operator
Keyword: finite speed of propagation
Keyword: sharp estimates
Keyword: hysteresis energy losses
MSC: 35B10
MSC: 35B40
MSC: 35L70
MSC: 74H45
MSC: 74H99
idZBL: Zbl 0668.35065
idMR: MR0944783
DOI: 10.21136/AM.1988.104302
.
Date available: 2008-05-20T18:34:36Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104302
.
Reference: [1] S. Fučík A. Kufner: Nonlinear differential equations.(Czech). SNTL, Praha, 1978.
Reference: [2] P. Krejčí: Hysteresis and periodic solutions to semilinear and quasilinear wave equations.Math. Z. 193 (1986), 247-264. MR 0856153, 10.1007/BF01174335
Reference: [3] P. Krejčí: On Ishlinskii model for non-perfectly elastic bodies.Apl. mat. 33 (1988), No. 2, 133-144. MR 0940712
Reference: [4] A. Kufner O. John S. Fučík: Function spaces.Academia, Praha, 1977. MR 0482102
Reference: [5] J.-L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [6] О. В. Бесов, В П. Ильин С. М. Никольский: Интегральные представления функций и теоремы вложения.Наука, Москва, 1975. Zbl 1231.90252
Reference: [7] А. Ю. Ишлинский: Некоторые применения статистики к описанию законов деформирования тел.Изв. АН СССР, OTH, 1944, Но 9, 583-590. Zbl 0149.19102
Reference: [8] M. А. Красносельский А. В. Покровский: Системы с гистерезисом.Наука, Москва, 1983. Zbl 1229.47001
.

Files

Files Size Format View
AplMat_33-1988-3_4.pdf 892.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo