Title:
|
Variational-hemivariational inequalities in nonlinear elasticity. The coercive case (English) |
Author:
|
Panagiotopoulos, Panagiotis D. |
Language:
|
English |
Journal:
|
Aplikace matematiky |
ISSN:
|
0373-6725 |
Volume:
|
33 |
Issue:
|
4 |
Year:
|
1988 |
Pages:
|
249-268 |
Summary lang:
|
English |
Summary lang:
|
Russian |
Summary lang:
|
Czech |
. |
Category:
|
math |
. |
Summary:
|
Existence of a solution of the problem of nonlinear elasticity with non-classical boundary conditions, when the relationship between the corresponding dual quantities is given in terms of a nonmonotone and generally multivalued relation. The mathematical formulation leads to a problem of non-smooth and nonconvex optimization, and in its weak form to hemivariational inequalities and to the determination of the so called substationary points of the given potential. (English) |
Keyword:
|
non-smooth optimization |
Keyword:
|
nonconvex optimization |
Keyword:
|
substationary points of potential |
Keyword:
|
small strains |
Keyword:
|
uniaxial contact problem |
Keyword:
|
nonmonotone reaction-displacement diagram |
Keyword:
|
frictional effects |
Keyword:
|
nonmonotone shearing |
Keyword:
|
multivalued functions |
Keyword:
|
variational-hemivariational inequalities |
Keyword:
|
nonlinear elasticity |
MSC:
|
35A15 |
MSC:
|
35J85 |
MSC:
|
49A29 |
MSC:
|
49A99 |
MSC:
|
49J40 |
MSC:
|
49J99 |
MSC:
|
73C50 |
MSC:
|
74B20 |
MSC:
|
74S30 |
idZBL:
|
Zbl 0665.73020 |
idMR:
|
MR0949247 |
DOI:
|
10.21136/AM.1988.104307 |
. |
Date available:
|
2008-05-20T18:34:48Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/104307 |
. |
Reference:
|
[1] J. J. Moreau: La notion de sur-potentiel et les liaisons unilatérales en élastostatique.C. R. Acad. Sc., Paris 267A (1968) 954-957. Zbl 0172.49802, MR 0241038 |
Reference:
|
[2] G. Duvaut, J. L. Lions: Les inéquations en Mécanique et en Physique.Dunod, Paris 1972. Zbl 0298.73001, MR 0464857 |
Reference:
|
[3] P. D. Panagiotopoulos: Inequality Problems in Mechanics. Convex and Nonconvex Energy Functions.Birkhäuser Verlag, Basel/Boston 1985. MR 0896909 |
Reference:
|
[4] G. Fichera: Boundary Value Problems in Elasticity with Unilateral Constraints.In: Encyclopedia of Physics (ed. by S. Flügge) Vol. VI a/2. Springer Verlag, Berlin 1972. |
Reference:
|
[5] G. Fichera: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno.Mem. Accad. Naz. Lincei, VIII 7 (1964) 91 - 140. Zbl 0146.21204, MR 0178631 |
Reference:
|
[6] P. D. Panagiotopoulos: Non-convex Superpotentials in the Sense of F. H. Clarke and Applications.Mech. Res. Comm. 8 (1981) 335-340. Zbl 0497.73020, MR 0639382, 10.1016/0093-6413(81)90064-1 |
Reference:
|
[7] P. D. Panagiotopoulos: Nonconvex Energy Functions. Hemivariational Inequalities and Substationarity Principles.Acta Mechanica 48 (1983) 160-183. Zbl 0538.73018, MR 0715806 |
Reference:
|
[8] F. H. Clarke: Nonsmooth Analysis and Optimization.J. Wiley, N. York 1984. |
Reference:
|
[9] R. T. Rockafellar: Generalized Directional Derivatives and Subgradients of Non-convex Functions.Can. J. Math. XXXII (1980) 257-280. MR 0571922 |
Reference:
|
[10] P. D. Panagiotopoulos: Une généralization non-convex de la notion du sur-potentiel et ses applications.CR. Acad. Sc., Paris 296B (1983) 1105-1108. MR 0720434 |
Reference:
|
[11] P. D. Panagiotopoulos: Hemivariational Inequalities and Substationarity in the static theory of v. Kármán plates.ZAMM 65 (1985) 219-229. MR 0801713, 10.1002/zamm.19850650608 |
Reference:
|
[12] P. D. Panagiotopoulos: Nonconvex Unilateral Contact Problems and Approximation.In: Proc. MAFELAP 1984 Conf. (J. Whiteman ed.) p. 547-553, Academic Press 1985. MR 0811061 |
Reference:
|
[13] P. D. Panagiotopoulos: Nonconvex Problems of Semipermeable Media and Related Topics.ZAMM 65 (1985) 29-36. Zbl 0574.73015, MR 0841254, 10.1002/zamm.19850650116 |
Reference:
|
[14] P. D. Panagiotopoulos: Hemivariational Inequalities. Existence and Approximation Results.Proc. 2nd Meeting Unilateral Problems in Struct. Anal. (ed. G. delPiero, F. Maceri). CISM Publ. No. 288, Springer Verlag, Wien N. York, 1985 p. 223-246. Zbl 0621.49003 |
Reference:
|
[15] P. D. Panagiotopoulos, A. Avdelas: A Hemivariational Inequality Approach to the Unilateral Contact Problem and Substationarity Principles.Ing. Archiv. 54 (1984) 401 - 412. Zbl 0554.73094, 10.1007/BF00537372 |
Reference:
|
[16] P. D. Panagiotopoulos, C. C. Baniotopoulos: A hemivariational inequality and substationarity approach to the interface problem: Theory and prospects of applications.Eng. Anal. 1 (1984) 20-31. 10.1016/0264-682X(84)90006-6 |
Reference:
|
[17] H. Floegl, H. A. Mang: Tension Stiffening Concept Based on Bond Slip.ASCE, ST 12, 108 (1982), 2681-2701. |
Reference:
|
[18] C. Baniotopoulos: Analysis of Structures with Complete Stress-Strain Laws.Doct. Thesis Aristotle University Thessaloniki, 1985. |
Reference:
|
[19] K. C. Chang: Variational Methods for Non-differentiable Functionals and their Applications to Partial Differential Equations.J. Math. Anal. Appl. 80 (1981) 102- 129. Zbl 0487.49027, MR 0614246, 10.1016/0022-247X(81)90095-0 |
Reference:
|
[20] F. Lene: Sur les matériaux élastiques á énergie de déformation non quadratique.J. de Mécanique 13(1974) 499 - 534. Zbl 0322.35036, MR 0375890 |
Reference:
|
[21] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Akademia, Prague 1967. MR 0227584 |
Reference:
|
[22] I. Hlaváček J. Haslinger J. Nečas J. Lovíšek: Solution of variariational inequalities in mechanics.(Slovak). Alfa, Bratislava 1982. MR 0755152 |
Reference:
|
[23] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastoplastic Bodies.Elsevier, Amsterdam 1981. |
Reference:
|
[24] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéeaires.Dunod/Gauthier-Villars, Paris 1969. MR 0259693 |
Reference:
|
[25] I. Ekeland, R. Temam: Convex Analysis and Variational Problems.North-Holland, Amsterdam and American Elsevier, New York 1976. Zbl 0322.90046, MR 0463994 |
Reference:
|
[26] J. Rauch: Discontinuous Semilinear Diiferentail Equations and Multiple Valued Maps.Proc. A. M. S. 64 (1977) 277-282. MR 0442453, 10.1090/S0002-9939-1977-0442453-6 |
Reference:
|
[27] M. C. Pelissier: Sur quelques problèmes non linéaires en glaciologie.Thèse Université Paris XI, 1975. MR 0439015 |
Reference:
|
[28] Z. Mróz: Mathematical Models of Inelastic Material Behaviour.Solid Mechanics Division, Univ. of Waterloo, 1973. |
Reference:
|
[29] D. W. Haines, W. D. Wilson: Strain-Energy Density Function for Rubber-like Materials.J. Mech. Phys. Solids 27 (1979) 345-360. Zbl 0425.73031, 10.1016/0022-5096(79)90034-6 |
Reference:
|
[30] P. Suquet: Plasticité et hornogènéisation.Thèse d'Etat. Université Paris VI, 1982. |
Reference:
|
[31] H. Matthies G. Strang, E. Christiansen: The Saddle Point of a Differential Program.In ''Energy Methods in Finite Element Analysis" ed. by R. Glowinski, E. Rodin, O. C. Zienkiewicz J. Wiley, N. York, 1979. MR 0537013 |
Reference:
|
[32] D. Ornstein: A Non-Inequality for Differential Operators in the $L^1$-norm.Arch. Rat. Mech. Anal. 11 (1962) 40-49. MR 0149331, 10.1007/BF00253928 |
Reference:
|
[33] A. Kufner O. John, S. Fučík: Function Spaces.Noordhoff International Publ., Leyden and Academia, Prague, 1977. MR 0482102 |
. |