Previous |  Up |  Next

Article

Title: Variational-hemivariational inequalities in nonlinear elasticity. The coercive case (English)
Author: Panagiotopoulos, Panagiotis D.
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 4
Year: 1988
Pages: 249-268
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Existence of a solution of the problem of nonlinear elasticity with non-classical boundary conditions, when the relationship between the corresponding dual quantities is given in terms of a nonmonotone and generally multivalued relation. The mathematical formulation leads to a problem of non-smooth and nonconvex optimization, and in its weak form to hemivariational inequalities and to the determination of the so called substationary points of the given potential. (English)
Keyword: non-smooth optimization
Keyword: nonconvex optimization
Keyword: substationary points of potential
Keyword: small strains
Keyword: uniaxial contact problem
Keyword: nonmonotone reaction-displacement diagram
Keyword: frictional effects
Keyword: nonmonotone shearing
Keyword: multivalued functions
Keyword: variational-hemivariational inequalities
Keyword: nonlinear elasticity
MSC: 35A15
MSC: 35J85
MSC: 49A29
MSC: 49A99
MSC: 49J40
MSC: 49J99
MSC: 73C50
MSC: 74B20
MSC: 74S30
idZBL: Zbl 0665.73020
idMR: MR0949247
DOI: 10.21136/AM.1988.104307
.
Date available: 2008-05-20T18:34:48Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104307
.
Reference: [1] J. J. Moreau: La notion de sur-potentiel et les liaisons unilatérales en élastostatique.C. R. Acad. Sc., Paris 267A (1968) 954-957. Zbl 0172.49802, MR 0241038
Reference: [2] G. Duvaut, J. L. Lions: Les inéquations en Mécanique et en Physique.Dunod, Paris 1972. Zbl 0298.73001, MR 0464857
Reference: [3] P. D. Panagiotopoulos: Inequality Problems in Mechanics. Convex and Nonconvex Energy Functions.Birkhäuser Verlag, Basel/Boston 1985. MR 0896909
Reference: [4] G. Fichera: Boundary Value Problems in Elasticity with Unilateral Constraints.In: Encyclopedia of Physics (ed. by S. Flügge) Vol. VI a/2. Springer Verlag, Berlin 1972.
Reference: [5] G. Fichera: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno.Mem. Accad. Naz. Lincei, VIII 7 (1964) 91 - 140. Zbl 0146.21204, MR 0178631
Reference: [6] P. D. Panagiotopoulos: Non-convex Superpotentials in the Sense of F. H. Clarke and Applications.Mech. Res. Comm. 8 (1981) 335-340. Zbl 0497.73020, MR 0639382, 10.1016/0093-6413(81)90064-1
Reference: [7] P. D. Panagiotopoulos: Nonconvex Energy Functions. Hemivariational Inequalities and Substationarity Principles.Acta Mechanica 48 (1983) 160-183. Zbl 0538.73018, MR 0715806
Reference: [8] F. H. Clarke: Nonsmooth Analysis and Optimization.J. Wiley, N. York 1984.
Reference: [9] R. T. Rockafellar: Generalized Directional Derivatives and Subgradients of Non-convex Functions.Can. J. Math. XXXII (1980) 257-280. MR 0571922
Reference: [10] P. D. Panagiotopoulos: Une généralization non-convex de la notion du sur-potentiel et ses applications.CR. Acad. Sc., Paris 296B (1983) 1105-1108. MR 0720434
Reference: [11] P. D. Panagiotopoulos: Hemivariational Inequalities and Substationarity in the static theory of v. Kármán plates.ZAMM 65 (1985) 219-229. MR 0801713, 10.1002/zamm.19850650608
Reference: [12] P. D. Panagiotopoulos: Nonconvex Unilateral Contact Problems and Approximation.In: Proc. MAFELAP 1984 Conf. (J. Whiteman ed.) p. 547-553, Academic Press 1985. MR 0811061
Reference: [13] P. D. Panagiotopoulos: Nonconvex Problems of Semipermeable Media and Related Topics.ZAMM 65 (1985) 29-36. Zbl 0574.73015, MR 0841254, 10.1002/zamm.19850650116
Reference: [14] P. D. Panagiotopoulos: Hemivariational Inequalities. Existence and Approximation Results.Proc. 2nd Meeting Unilateral Problems in Struct. Anal. (ed. G. delPiero, F. Maceri). CISM Publ. No. 288, Springer Verlag, Wien N. York, 1985 p. 223-246. Zbl 0621.49003
Reference: [15] P. D. Panagiotopoulos, A. Avdelas: A Hemivariational Inequality Approach to the Unilateral Contact Problem and Substationarity Principles.Ing. Archiv. 54 (1984) 401 - 412. Zbl 0554.73094, 10.1007/BF00537372
Reference: [16] P. D. Panagiotopoulos, C. C. Baniotopoulos: A hemivariational inequality and substationarity approach to the interface problem: Theory and prospects of applications.Eng. Anal. 1 (1984) 20-31. 10.1016/0264-682X(84)90006-6
Reference: [17] H. Floegl, H. A. Mang: Tension Stiffening Concept Based on Bond Slip.ASCE, ST 12, 108 (1982), 2681-2701.
Reference: [18] C. Baniotopoulos: Analysis of Structures with Complete Stress-Strain Laws.Doct. Thesis Aristotle University Thessaloniki, 1985.
Reference: [19] K. C. Chang: Variational Methods for Non-differentiable Functionals and their Applications to Partial Differential Equations.J. Math. Anal. Appl. 80 (1981) 102- 129. Zbl 0487.49027, MR 0614246, 10.1016/0022-247X(81)90095-0
Reference: [20] F. Lene: Sur les matériaux élastiques á énergie de déformation non quadratique.J. de Mécanique 13(1974) 499 - 534. Zbl 0322.35036, MR 0375890
Reference: [21] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Akademia, Prague 1967. MR 0227584
Reference: [22] I. Hlaváček J. Haslinger J. Nečas J. Lovíšek: Solution of variariational inequalities in mechanics.(Slovak). Alfa, Bratislava 1982. MR 0755152
Reference: [23] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastoplastic Bodies.Elsevier, Amsterdam 1981.
Reference: [24] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéeaires.Dunod/Gauthier-Villars, Paris 1969. MR 0259693
Reference: [25] I. Ekeland, R. Temam: Convex Analysis and Variational Problems.North-Holland, Amsterdam and American Elsevier, New York 1976. Zbl 0322.90046, MR 0463994
Reference: [26] J. Rauch: Discontinuous Semilinear Diiferentail Equations and Multiple Valued Maps.Proc. A. M. S. 64 (1977) 277-282. MR 0442453, 10.1090/S0002-9939-1977-0442453-6
Reference: [27] M. C. Pelissier: Sur quelques problèmes non linéaires en glaciologie.Thèse Université Paris XI, 1975. MR 0439015
Reference: [28] Z. Mróz: Mathematical Models of Inelastic Material Behaviour.Solid Mechanics Division, Univ. of Waterloo, 1973.
Reference: [29] D. W. Haines, W. D. Wilson: Strain-Energy Density Function for Rubber-like Materials.J. Mech. Phys. Solids 27 (1979) 345-360. Zbl 0425.73031, 10.1016/0022-5096(79)90034-6
Reference: [30] P. Suquet: Plasticité et hornogènéisation.Thèse d'Etat. Université Paris VI, 1982.
Reference: [31] H. Matthies G. Strang, E. Christiansen: The Saddle Point of a Differential Program.In ''Energy Methods in Finite Element Analysis" ed. by R. Glowinski, E. Rodin, O. C. Zienkiewicz J. Wiley, N. York, 1979. MR 0537013
Reference: [32] D. Ornstein: A Non-Inequality for Differential Operators in the $L^1$-norm.Arch. Rat. Mech. Anal. 11 (1962) 40-49. MR 0149331, 10.1007/BF00253928
Reference: [33] A. Kufner O. John, S. Fučík: Function Spaces.Noordhoff International Publ., Leyden and Academia, Prague, 1977. MR 0482102
.

Files

Files Size Format View
AplMat_33-1988-4_1.pdf 3.027Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo