Previous |  Up |  Next

Article

Title: Error estimates for external approximation of ordinary differential equations and the superconvergence property (English)
Author: Regińska, Teresa
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 4
Year: 1988
Pages: 277-290
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: A pointwise error estimate and an estimate in norm are obtained for a class of external methods approximating boundary value problems. Dependence of a superconvergence phenomenon on the external approximation method is studied. In this general framework, superconvergence at the knot points for piecewise polynomial external methods is established. (English)
Keyword: superconvergence
Keyword: external approximation
Keyword: pointwise error estimate
Keyword: finite element subspaces
Keyword: orthogonal projections
Keyword: ordinary differential operators
MSC: 34B05
MSC: 65L10
idZBL: Zbl 0664.65076
idMR: MR0949249
DOI: 10.21136/AM.1988.104309
.
Date available: 2008-05-20T18:34:54Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104309
.
Reference: [1] J. P. Aubin: Approximation of elliptic boundary value problems.Wiley-Interscience (1972). Zbl 0248.65063, MR 0478662
Reference: [2] I. Babuška J. E. Osborn: Generalized finite element methods: their performance and their relation to mixed methods.SIAM J. Numer. Anal. 20 (1983), 510-536. MR 0701094, 10.1137/0720034
Reference: [3] C. de Boor B. Swartz: Collocation at Gaussian points.SIAM J. Numer. Anal. 10 (1973), 582-606. MR 0373328, 10.1137/0710052
Reference: [4] P. Ciarlet: The finite element method for elliptic problems.North-Holland Publishing Company (1978). Zbl 0383.65058, MR 0520174
Reference: [5] C. A. Chandler: Superconvergence for second kind integral equations, Application and Numerical Solution of Integral Equations.Sijthoff, Noordhoff (1980), 103-117. MR 0582986
Reference: [6] P. J. Dams: Interpolation and approximation.Blaisdell Publishing Company (1963).
Reference: [7] J. Douglas, Jr. T. Dupont: Some superconvergence results for Galerkin methods for the approximate solution of two point boundary problems.Topics in numerical analysis, (1973), 89-92. MR 0366044
Reference: [8] J. Douglas, Jr. T. Dupont: Collocation methods for parabolic equations in a single space variable.Lecture Notes in Math. 385 (1974). MR 0483559
Reference: [9] T. Dupont: A unified theory of superconvergence for Galerkin methods for two-point boundary value problems.SIAM J. Numer. Anal. vol. 13, no. 3, (1976), 362-368. MR 0408256, 10.1137/0713032
Reference: [10] M. Křížek P. Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175-198. MR 0900263, 10.1007/BF00047538
Reference: [11] T. Regińska: Superconvergence of external approximation for two-point boundary problems.Apl. Mat. 32 (1987), pp. 25-36. MR 0879327
Reference: [12] G. R. Richter: Superconvergence of piecewise polynomial Galerkin approximations for Fredholm integral equations of the second kind.Numer. Math. 31 (1978), pp. 63-70. Zbl 0427.65091, MR 0508588, 10.1007/BF01396014
Reference: [13] A. Spence K. S. Thomas: On superconvergence properties of Galerkin's method for compact operator equations.IMA J. Numer. Anal. 3 (1983), pp. 253 - 271. MR 0723049, 10.1093/imanum/3.3.253
Reference: [14] V. Thomée: Spline approximation and difference schemes for the heat equation. The mathematical foundations of finite element method with application to partial differential equations.Academic Press (1972), pp. 711 - 746. MR 0403265
Reference: [15] M. Zlámal: Some superconvergence results in the finite element method.Lecture Notes 606, (1977), p. 353-362. MR 0488863, 10.1007/BFb0064473
.

Files

Files Size Format View
AplMat_33-1988-4_3.pdf 1.615Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo