Previous |  Up |  Next

Article

Title: New regions of stability in input optimization (English)
Author: Huang, Sheng
Author: Zlobec, Sanjo
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 6
Year: 1988
Pages: 470-486
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: using point-to-set mappings we identify two new regions of stability in input optimization. Then we extend various results from the literature on optimality conditions, continuity of Lagrange multipliers, and the marginal value formula over the new and some old regions of stability. (English)
Keyword: parametric optimization
Keyword: point-to-set mappings
Keyword: regions of stability
Keyword: input optimization
Keyword: optimality conditions
Keyword: Lagrange multipliers
Keyword: marginal value
MSC: 54C60
MSC: 90C30
MSC: 90C31
idZBL: Zbl 0664.90085
idMR: MR0973241
DOI: 10.21136/AM.1988.104325
.
Date available: 2008-05-20T18:35:37Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104325
.
Reference: [1] B. Bank J. Guddat D. Klatte B. Kummer K. Tammer: Nonlinear Parametric Optimization.Akademie-Verlag, Berlin, 1982. MR 0701243
Reference: [2] A. Ben-Israel A. Ben-Tal S. Zlobec: Optimality in Nonlinear Programming: A Feasible Directions Approach.Wiley-Interscience, New York, 1981. MR 0607673
Reference: [3] C. Berge: Espace Topologiques, fonctions multivogues.Dunod, Paris, 1959. MR 0105663
Reference: [4] I. Cojocaru: Regions de stabilité dans la programmation linéaire.An. Univ. Bucuresti Mat. 34 (1985), 12-21. Zbl 0584.90054, MR 0808044
Reference: [5] I. I. Eremin N. N. Astafiev: Introduction to the Theory of Linear and Convex Programming.Nauka, Moscow, 1976. (In Russian.) MR 0475825
Reference: [6] W. W. Hogan: Point-to-set maps in mathematical programming.SIAM Review 15 (1973), 591-603. Zbl 0256.90042, MR 0345641, 10.1137/1015073
Reference: [7] D. Klatte: On the lower semicontinuity of optimal sets in convex parametric optimization.Mathematical Programming Studies 10 (1979), 104-109. Zbl 0404.90087, MR 0527061, 10.1007/BFb0120847
Reference: [8] D. Klatte: A sufficient condition for lower semicontinuity of solution sets of systems of convex inequalities.Mathematical Programming Study 21 (1984), 139-149. Zbl 0562.90088, MR 0751248, 10.1007/BFb0121216
Reference: [9] D. Klatte: On stability of local and global optimal solutions in parametric problems of nonlinear programming.In: Parametric Optimization and Methods of Approximation for Ill-posed Problems in Mathematical Programming. Academy of Sciences U.S.S.R. The Ural Scientific Institute (1985), 120-132. (In Russian.) MR 0841542
Reference: [10] F. Nožička J. Guddat H. Hollatz B. Bank: Theorie der linearen parametrischen Optimierung.Akademie-Verlag, Berlin, 1974.
Reference: [11] J. Petrič S. Zlobec: Nonlinear Programming.Naučna Knjiga, Belgrade, 1983. (In Serbo-Croatian.)
Reference: [12] J. Semple S. Zlobec: Continuity of a Lagrangian multiplier function in input optimization.Mathematical Programming 34 (1986), 362-269. MR 0839610, 10.1007/BF01582236
Reference: [13] J. Semple S. Zlobec: On a necessary condition for stability in perturbed linear and convex programming.Zeitschrift für Operations Research, Series A: Theory 31 (1987) 161-172. MR 0917933
Reference: [14] J. Semple S. Zlobec: Continuity of "non-standard" Lagrange multiplier functions in input optimization.UNISA Report 34/86 (14), June 1986. (To be published.) MR 0839610
Reference: [15] C. Zidaroiu: Regions of stability for random decision systems with complete connections.An. Univ. Bucuresti Mat. 34 (1985), 87-97. Zbl 0573.93077, MR 0808053
Reference: [16] S. Zlobec: Regions of stability for ill-posed convex programs.Aplikace Matematiky 27 (1982), 176-191. Zbl 0482.90073, MR 0658001
Reference: [17] S. Zlobec: Characterizing an optimal input in perturbed convex programming.Mathematical Programming 25 (1983), 109-121. Zbl 0505.90077, MR 0679256, 10.1007/BF02591721
Reference: [18] S. Zlobec: Input optimization: I. Optimal realizations of mathematical models.Mathematical Programming 31 (1985), 245-268. Zbl 0589.90068, MR 0783391, 10.1007/BF02591948
Reference: [19] S. Zlobec: Regions of stability for ill-posed convex programs: An addendum.Aplikace Matematiky 31 (1968), 109-117. MR 0837472
Reference: [20] S. Zlobec: Characterizing an optimal input in perturbed convex programming: Corrigendum.Mathematical Programming 35 (1986), 368-371. Zbl 0606.90109, MR 0850381, 10.1007/BF01580887
Reference: [21] S. Zlobec: Input optimization: III. Optimal realizations of multi-objective models.Optimization 17 (1986), 429-445. MR 0843034, 10.1080/02331938608843153
Reference: [22] S. Zlobec: Survey of input optimization.Optimization 18 (1987), 309-348. Zbl 0633.90077, MR 0882514, 10.1080/02331938708843243
Reference: [23] S. Zlobec: An index condition in input optimization.Utilitas Mathematica 33 (1988), 183-192. Zbl 0655.90075, MR 0936175
Reference: [24] S. Zlobec. A. Ben-Israel: Perturbed convex programs: Continuity of optimal solutions and optimal values.In: Methods of Operations Research (Proceedings of the III Symposium on Operations Research). Verlag Athenaum/Hain/Scriptor/Hanstein 31 (1979), 739-749. Zbl 0405.90071
Reference: [25] S. Zlobec R. Gardner A. Ben-Israel: Regions of stability for arbitrarily perturbed convex programs.In: Mathematical Programming with Data Perturbations. M. Dekker, New York (1981), 69-89. MR 0652938
.

Files

Files Size Format View
AplMat_33-1988-6_4.pdf 2.274Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo