Previous |  Up |  Next

Article

Title: Optimal design of cylindrical shell with a rigid obstacle (English)
Author: Lovíšek, Ján
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 34
Issue: 1
Year: 1989
Pages: 18-32
Summary lang: English
.
Category: math
.
Summary: The aim of the present paper is to study problems of optimal design in mechanics, whose variational form are inequalities expressing the principle of virtual power in its inequality form. We consider an optimal control problem in whixh the state of the system (involving an elliptic, linear symmetric operator, the coefficients of which are chosen as the design - control variables) is defined as the (unique) solution of stationary variational inequalities. The existence result proved in Section 1 is applied in Section 2 to the optimal design of an elastic cylindrical shell subject to unilateral constraints. We assume that the bending of the shell is limited by a rigid obstacle. The role of the design variable is played by the thickness of the shell. (English)
Keyword: optimal control problem
Keyword: elliptic, linear symmetric operator
Keyword: unique solution of stationary variational inequalities
Keyword: convex set
Keyword: principle of virtual power
Keyword: unilateral constraints
Keyword: bending
Keyword: cylindrical shell
Keyword: thickness function
Keyword: obstacle
MSC: 49A27
MSC: 49A29
MSC: 49A34
MSC: 49J27
MSC: 49J40
MSC: 49J99
MSC: 73k40
MSC: 74G30
MSC: 74H25
MSC: 74K15
MSC: 74P99
idZBL: Zbl 0678.73059
idMR: MR0982340
DOI: 10.21136/AM.1989.104331
.
Date available: 2008-05-20T18:35:50Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104331
.
Reference: [1] R. A. Adams: Sobolev Spaces.Academic Press, New York, San Francisco, London 1975, Zbl 0314.46030, MR 0450957
Reference: [2] H. Attouch: Convergence des solution d'inéquations variationnelles avec obstacle.Proceedings of the International Meeting on Recent Methods in Nonlinear analysis. (Rome, May 1978) ed. by E. De Giorgi - E. Magenes - U. Mosco.
Reference: [3] V. Barbu: Optimal control of variational inequalities.Pitman Advanced Publishing Program, Boston. London, Melbourne 1984. Zbl 0574.49005, MR 0742624
Reference: [4] I. Boccardo C. Dolcetta: Stabilita delle soluzioni di disequazioni variazionali ellittiche e paraboliche quasi-lineari.Ann. Universeta Ferrara, 24 (1978), 99-111.
Reference: [5] J. Céa: Optimisation, Théorie et Algorithmes.Dunod Paris, 1971. MR 0298892
Reference: [6] G. Duvaut J. L. Lions: Inequalities in mechanics and physics.Berlin, Springer Verlag 1975. MR 0521262
Reference: [7] R. Glowinski: Numerical Methods for Nonlinear Variational Problems.Springer Verlag 1984. Zbl 0536.65054, MR 0737005
Reference: [8] I. Hlaváček I. Bock J. Lovíšek: Optimal Control of a Variational Inequality with Applications to Structural Analysis.II. Local Optimization of the Stress in a Beam. III. Optimal Design of an Elastic Plate. Appl. Math. Optimization 13: 117-136/1985. MR 0794174, 10.1007/BF01442202
Reference: [9] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press, 1980. MR 0567696
Reference: [10] V. G. Litvinov: Optimal control of elliptic boundary value problems with applications to mechanics.Moskva "Nauka" 1987, (in Russian).
Reference: [11] M. Bernadou J. M. Boisserie: The finite element method in thin shell. Theory: Application to arch Dam simulations.Birkhäuser Boston 1982. MR 0663553
Reference: [12] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: An introduction.Elsevier Scientific Publishing Company, Amsterdam 1981. MR 0600655
Reference: [13] U. Mosco: Convergence of convex sets of solutions of variational inequalities.Advances of Math. 3 (1969), 510-585. MR 0298508, 10.1016/0001-8708(69)90009-7
Reference: [14] K. Ohtake J. T. Oden N. Kikuchi: Analysis of certain unilateral problems in von Karman plate theory by a penalty method - PART 1. A variational principle with penalty.Computer Methods in Applied Mechanics and Engineering 24 (1980), 117-213, North Holland Publishing Company.
Reference: [15] P. D. Panagiotopoulos: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy functions.Birkhäuser-Verlag, Boston-Basel-Stutgart, 1985. Zbl 0579.73014, MR 0896909
.

Files

Files Size Format View
AplMat_34-1989-1_2.pdf 1.771Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo