Previous |  Up |  Next

Article

Title: Dynamic von Kármán equations involving nonlinear damping: Time-periodic solutions (English)
Author: Feireisl, Eduard
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 34
Issue: 1
Year: 1989
Pages: 46-56
Summary lang: English
.
Category: math
.
Summary: In the paper, time-periodic solutions to dynamic von Kármán equations are investigated. Assuming that there is a damping term in the equations we are able to show the existence of at least one solution to the problem. The Faedo-Galerkin method is used together with some basic ideas concerning monotone operators on Orlicz spaces. (English)
Keyword: nonlinear damping
Keyword: damped transversal vibrations
Keyword: dynamic von Kármán equations
Keyword: Faedo-Galerkin method
Keyword: monotone operators on Orlicz spaces
Keyword: time-periodic solution
MSC: 35B10
MSC: 35J65
MSC: 35Q20
MSC: 35Q99
MSC: 73K12
MSC: 74H45
MSC: 74K20
idZBL: Zbl 0676.73026
idMR: MR0982342
DOI: 10.21136/AM.1989.104333
.
Date available: 2008-05-20T18:35:56Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104333
.
Reference: [1] H. Gajewski K. Gröger K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie-Verlag Berlin 1974. MR 0636412
Reference: [2] A. Haraux: Dissipativity in the sense of Levinson for a class of second-order nonlinear evolution equations.Nonlinear Anal. 6 (1982), pp. 1207-1220. Zbl 0505.35012, MR 0683841, 10.1016/0362-546X(82)90031-1
Reference: [3] A. Kufner O. John S. Fučík: Function spaces.Academia Praha 1977. MR 0482102
Reference: [4] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars, Paris 1969. Zbl 0189.40603, MR 0259693
Reference: [5] J. L. Lions, E. Magenes: Problèmes aux limites non homogènes et applications 1.Dunod, Paris 1968.
Reference: [6] N. F. Morozov: Selected two-dimensional problems of the elasticity theory.(Russian.) Leningrad 1978. MR 0547112
Reference: [7] M. Nakao: Periodic solution and decay for some nonlinear wave equations with sublinear dissipative terms.Nonlinear Anal. 10 (1986), pp. 587 - 602. Zbl 0601.35075, MR 0844988, 10.1016/0362-546X(86)90144-6
Reference: [8] G. Prodi: Soluzioni periodiche di equazioni a derivative parziali di tipo iperbolico non lineari.Ann. Mat. Рurа Appl. 42 (1956), pp. 25 - 49. MR 0089985, 10.1007/BF02411872
Reference: [9] G. Prouse: Soluzioni periodiche dell'equazione deile onde non omogenea con termine dissipativo quadratico.Ricerche Mat. 13 (1964), pp. 261 - 280. MR 0194753
Reference: [10] P. H. Rabinowitz: Free vibrations for a semi-linear wave equation.Comm. Pure Appl. Math. 31 (1978), pp. 31-68. MR 0470378, 10.1002/cpa.3160310103
Reference: [11] A. Stahel: A remark on the equation of a vibrating plate.Proc. Royal Soc. Edinburgh 106 A (1987), pp. 307-314. Zbl 0625.73064, MR 0906214
Reference: [12] O. Vejvoda, al.: Partial differential equations: Time-periodic solutions.Martinus Nijhoff, The Hague 1982. Zbl 0501.35001
Reference: [13] W. von Wahl: On nonlinear evolution equations in a Banach space and nonlinear vibrations of the clamped plate.Bayreuther Mathematische Schriften, 7 (1981), pp. 1 - 93. MR 0618332
.

Files

Files Size Format View
AplMat_34-1989-1_4.pdf 1.292Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo