Previous |  Up |  Next

Article

Title: Stability of a model for the Belousov-Zhabotinskij reaction (English)
Author: Haluška, Vladimír
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 34
Issue: 2
Year: 1989
Pages: 89-104
Summary lang: English
.
Category: math
.
Summary: The paper deals with the Field-Körös-Noyes' model of the Belousov-Yhabotinskij reaction. By means of the method of the Ljapunov function a sufficient condition is determined that the non-trivial critical point of this model be asymptotically stable with respect to a certain set. (English)
Keyword: Field-Körös-Noyes’ model
Keyword: Belousov-Zhabotinskij reaction
Keyword: Lyapunov function
Keyword: equilibrium point
Keyword: stability in the large
MSC: 34D20
MSC: 80A30
idZBL: Zbl 0681.34047
idMR: MR0990297
DOI: 10.21136/AM.1989.104338
.
Date available: 2008-05-20T18:36:09Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104338
.
Reference: [1] K. Bachratý: On the stability of a model for the Belousov-Zhabotinskij reaction.Acta mathematica Univ. Comen. XLII-XLIII (2983), 225-234. MR 0740754
Reference: [2] R. J. Field R. M. Noyes: Oscillations in chemical systems. IV. Limit cycle behaviour in in a model of a real chemical reaction.J. Chem. Phys. 60 (1974), 1877-1884. 10.1063/1.1681288
Reference: [3] P. Hartman: Ordinary Differential Equations.J. Wiley and Sons, New York-London-Sydney (1964) (Russian translation, Izdat Mir, Moskva, 1970). Zbl 0125.32102, MR 0171038
Reference: [4] I. D. Hsü: Existence of periodic solutions for the Belousov-Zaikin-Zhabotinskij reaction by a theorem of Hopf.J. Differential Equations 20 (1976), 339-403. MR 0457858
Reference: [5] J. La Salle S. Lefschetz: Stability by Liapunov'z Direct method with applications.Academic Press, New York-London (2961) (Russian translation, Izdat. Mir, Moskva, 1964).
Reference: [6] J. D. Murray: On a model for temporal oscillations in the Belousov-Zhabotinskij reaction.J. Chem. Phys. 6 (1975), 3610-3613.
Reference: [7] G. Streng: Linear algebra and its applications.Academic Press, New York (1976) (Russian translation, Izdat. Mir, Moskva, 1980).
Reference: [8] V. Šeda: On the existence of oscillatory solutions in the Weisbuch-Salomon-Atlan model for the Belousov-Zhabotinskij reaction.Apl. Mat. 23 (2978), 280-294. MR 0495430
Reference: [9] Y. Takeuchi N. Adachi H. Tokumaru: The stability of generalized Volterra equations.J. Math. anal. Appl. 62 (2978), 453-473. MR 0477317
Reference: [10] J. J. Tyson: The Belousov-Zhabotinskij reaction.Lecture Notes in Biomathematics, Springer-Verlag, Berlin-Heidelberg-New York (1916).
.

Files

Files Size Format View
AplMat_34-1989-2_1.pdf 1.814Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo