Previous |  Up |  Next

Article

Title: Stereology of grain boundary precipitates (English)
Author: Horálek, Vratislav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 34
Issue: 4
Year: 1989
Pages: 303-317
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Precipitates modelled by rotary symmetrical lens-shaped discs are situated on matrix grain boundaries and the homogeneous specimen is intersected by a plate section. The stereological model presented enables one to express all basic parameters of spatial structure and moments of the corresponding probability distributions of quantitative characteristics of precipitates in terms of planar structure parameters the values of which can be estimated from measurements carried out in the plane section. The derived relationships are transformed into those valid for spherical precipitates. (English)
Keyword: random tesselation
Keyword: stereology
Keyword: lens-shaped discs
Keyword: stereological model
Keyword: parameter estimations
MSC: 52A22
MSC: 60D05
MSC: 92F05
idZBL: Zbl 0688.60010
idMR: MR1008582
DOI: 10.21136/AM.1989.104358
.
Date available: 2008-05-20T18:37:05Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104358
.
Reference: [1] R. Coleman: An Introduction to Mathematical Stereology.Memoirs No. 3, Department of Theoretical Statistics, University of Aarhus, Denmark, 1979. Zbl 0442.60019, MR 0547508
Reference: [2] R. Coleman: Line section sampling of Wicksell's corpuscles.Acta Stereologica, 6 (1987), 33-36. Zbl 0619.60017
Reference: [3] E. N. Gilbert: Random subdivision of space into crystals.Ann. Math. Statistics, 33 (1962), 958-72. MR 0144253, 10.1214/aoms/1177704464
Reference: [4] A. M. Gokhale A. K. Jena: Size distribution of grain-boundary precipitates.Metallography 13 (1980), 307-17. 10.1016/0026-0800(80)90028-2
Reference: [5] V. Horálek: Statistical Models of Some Testing and Inspection Procedures of Products, Materials and Raw Materials.(in Czech). Thesis, Charles University Praha, 1961.
Reference: [6] A. J. Jakeman R. S. Anderssen: Abel type integral equation in stereology. I. General discussion.J. Microscopy, 105 (1975), 121-33.
Reference: [7] J. W. Martin R. D. Doherty: Stability of Microstructure in Metallic Systems.Cambridge University Press, London, 1975.
Reference: [8] J. L. Meijering: Interface area, edge length and number of vertices in crystal aggregates with random nucleation.Philips Res. Rep. 8 (1953), 270-90. Zbl 0053.33401
Reference: [9] R. E. Miles: The random division of space.Suppl. Adv. Appl. Prob., 1972, 243-66. Zbl 0258.60015
Reference: [10] J. Møller: Random tessellation in $R^d$.Memoirs No. 9, Department of Theoretical Statistics, University of Aarhus, Denmark, 1986.
Reference: [11] S. A. Saltykov: Stereometric Metallography.2nd. Ed., Metallurgizdat, Moscow, 1958.
Reference: [12] C. S. Smith L. Guttman: Measurement of internal boundaries in three-dimensional structure by random sectioning.Trans: AIME 197 (1953), 81 - 87.
Reference: [13] D. Stoyan W. S. Kendall J. Mecke: Stochastic Geometry and Its Applications.Akademie Verlag, Berlin, 1987. MR 0879119
Reference: [14] E. E. Underwood: Quantitative Stereology.Addison-Wesley, Reading, Mass., 1970.
Reference: [15] S. D. Wicksell: The corpuscle problem. A mathematical study of a biometric problem.Biometrika, 17 (1925), 84-99.
.

Files

Files Size Format View
AplMat_34-1989-4_4.pdf 2.140Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo