Previous |  Up |  Next


energy functionals; Preisach hysteresis; Maxwell equations; periodic solutions
Energy functionals for the Preisach hysteresis operator are used for proving the existence of weak periodic solutions of the one-dimensional systems of Maxwell equations with hysteresis for not too large right-hand sides. The upper bound for the speed of propagation of waves is independent of the hysteresis operator.
[1] А. И. Ахиезер И. А. Ахиезер: Электромагнетизм и электромагнитные волны. Высшая школа, Москва, 1985. Zbl 1223.81132
[2] M. А. Красносельский А. В. Покровский: Системы с гистерезисом. Наука, Москва, 1983. Zbl 1229.47001
[3] P. Krejčí: Hysteresis and periodic solutions to semilinear and quasilinear wave equations. Math. Z. 193, 247-264 (1986). DOI 10.1007/BF01174335 | MR 0856153
[4] P. Krejčí: On Ishlinskii's model for non-perfectly elastic bodies. Apl. mat. 33(1988), 133-144. MR 0940712
[5] P. Krejčí: A monotonicity method for solving hyperbolic problems with hysteresis. Apl. mat. 33 (1988), 197-203. MR 0944783
[6] P. Krejčí: Quasilinear wave equation with hysteresis: an initial-boundary-value problem. To appear.
[7] A. Visintin: On the Preisach model for hysteresis. Nonlinear Anal. T.M.A. 8, 977-996 (1984). MR 0760191 | Zbl 0563.35007
[8] A. Visintin A. Damlamian: Une généralisation vectorielle du modèle de Preisach pour l'hystérésis. C.R. Acad. Sc. Paris 297, sér. I, 437-440 (1983). MR 0732853
Partner of
EuDML logo