Previous |  Up |  Next

Article

Title: On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation (English)
Author: Křížek, Michal
Author: Neittaanmäki, Pekka
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 34
Issue: 6
Year: 1989
Pages: 480-499
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics. (English)
Keyword: time-harmonic Maxwell equations
Keyword: non-homogeneous conductivities
Keyword: three- dimensional problem
Keyword: error estimation
Keyword: finite element approximation
Keyword: numerical experiments
Keyword: solution theory
MSC: 35Q20
MSC: 35Q99
MSC: 35R05
MSC: 65N15
MSC: 65N30
MSC: 65Z05
MSC: 78A25
idZBL: Zbl 0696.65085
idMR: MR1026513
DOI: 10.21136/AM.1989.104379
.
Date available: 2008-05-20T18:38:05Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104379
.
Reference: [1] V. Bezvoda K. Segeth: Mathematical modeling in electromagnetic prospecting methods.Charles Univ., Prague, 1982.
Reference: [2] E. B. Byhovskiy: Solution of a mixed problem for the system of Maxwell equations in case of ideally conductive boundary.Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 12 (1957), 50-66. MR 0098567
Reference: [3] V. Červ K. Segeth: A comparison of the accuracy of the finite-difference solution to boundary-value problems for the Helmholtz equation obtained by direct and iterative methods.Apl. Mat. 27 (1982), 375-390. MR 0674982
Reference: [4] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [5] D. Colton L. Päivärinta: Far field patterns and the inverse scattering problem for electromagnetic waves in an inhomogeneous medium.Math. Proc. Cambridge Philos. Soc. 103 (1988), 561-575. MR 0932679, 10.1017/S0305004100065154
Reference: [6] G. Duvaut J. L. Lions: Inequalities in mechanics and physics.Springer-Verlag, Berlin, 1976. MR 0521262
Reference: [7] V. Girault P. A. Raviart: Finite element methods for Navier-Stokes equations.Springer- Verlag, Berlin, Heidelberg, New York, Tokyo, 1986. MR 0851383
Reference: [8] P. Grisvard: Boundary value problems in nonsmooth domains.Lecture Notes 19, Univ. of Maryland, Dep. of Math., College Park, 1980.
Reference: [9] G. Heindl: Interpolation and approximation by piecewise quadratic $C^1$-functions of two variables.in Multivariate approximation theory, ed. by W. Schempp and K. Zeller. ISNM vol. 51, Birkhäuser, Basel, 1979, pp. 146-161. MR 0560670
Reference: [10] E. Hewitt K. Stromberg: Real and abstract analysis.Springer-Verlag, New York, Heidelberg, Berlin, 1975. MR 0367121
Reference: [11] J. Kadlec: On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of convex open set.Czechoslovak Math. J. 14 (1964), 386-393. MR 0170088
Reference: [12] F. Kikuchi: An isomorphic property of two Hubert spaces appearing in electromagnetism.Japan J. Appl. Math. 3 (1986), 53-58. MR 0899213, 10.1007/BF03167091
Reference: [13] M. Křížek P. Neittaanmäki: Solvability of a first order system in three-dimensional nonsmooth domains.Apl. Mat. 30 (1985), 307-315. MR 0795991
Reference: [14] S. Mareš, al.: Introduction to applied geophysics.(Czech). SNTL, Prague, 1979.
Reference: [15] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [16] P. Neittaanmäki R. Picard: Error estimates for the finite element approximation to a Maxwell-type boundary value problem.Numer. Funct. Anal. Optim. 2 (1980), 267-285. MR 0588947, 10.1080/01630568008816057
Reference: [17] J. Saranen: On an inequality of Friedrichs.Math. Scand. 51 (1982), 310-322. Zbl 0524.35100, MR 0690534, 10.7146/math.scand.a-11983
Reference: [18] R. S. Varga: Matrix iterative analysis.Prentice-Hall, Englewood Cliffs, New Jersey, 1962. MR 0158502
Reference: [19] V. V. Voevodin, Ju. A. Kuzněcov: Matrices and computation.(Russian). Nauka, Moscow, 1984.
Reference: [20] Ch. Weber: A local compactness theorem for Maxwell's equations.Math. Methods Appl. Sci. 2 (1980), 12-25. Zbl 0432.35032, MR 0561375, 10.1002/mma.1670020103
Reference: [21] Ch. Weber: Regularity theorems for Maxwell's equations.Math. Methods Appl. Sci. 3 (1981), 523-536. Zbl 0477.35020, MR 0657071, 10.1002/mma.1670030137
.

Files

Files Size Format View
AplMat_34-1989-6_8.pdf 2.326Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo